图书介绍

智能材料在结构健康监测控制及生物力学中的应用 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

智能材料在结构健康监测控制及生物力学中的应用 英文版
  • 苏志强,杨耀文;苏瑞喜巴拉编 著
  • 出版社: 杭州:浙江大学出版社
  • ISBN:9787308082662
  • 出版时间:2012
  • 标注页数:618页
  • 文件大小:55MB
  • 文件页数:636页
  • 主题词:智能材料-应用-研究生-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

智能材料在结构健康监测控制及生物力学中的应用 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Overview1

1.2 Concept of Smart Systems/Structures for SHM5

1.3 Smart Materials6

1.4 Piezoelectricity and Piezoelectric Materials7

References14

2 Electro-Mechanical Impedance Technique17

2.1 Introduction17

2.2 Mechanical Impedance of Structures18

2.3 Impedance Modeling for EMI Technique21

2.4 Mechanical Impedance of PZT Patches27

2.5 PZT-Structure Interaction29

2.6 Practical Aspects of EMI Technique35

2.7 Signal Processing Techniques and Conventional Damage Quantification39

2.8 Major Technological Developments During the Last One and a Half Decades41

2.9 Advantages of EMI Technique46

2.10 Limitations of EMI Technique47

References47

Exercise 2.150

3 Impedance Models for Structural Health Monitoring Using Piezo-Impedance Transducers53

3.1 Introduction53

3.2 Early PZT-Structure Interaction Models53

3.3 2D Effective Mechanical Impedance56

3.4 2D Formulation Based on Effective Impedance58

3.5 Experimental Verification62

3.5.1 Details of Experimental Set-up62

3.5.2 Determination of Structural EDP Impedance by FEM63

3.5.3 Modeling of Structural Damping67

3.5.4 Wavelength Analysis and Convergence Test67

3.5.5 Comparison between Theoretical and Experimental Signatures69

3.6 Refining the 2D Impedance Model70

3.7 3D Interaction of PZT Transducer with Host Structure77

3.7.1 Necessity of3D Formulation77

3.7.2 Issues in ID and 2D Impedance Models77

3.7.3 Issues to Consider in 3D Impedance Model78

3.8 3D Model in Presence of Thick Adhesive Bonding81

3.8.1 Impedance Formulation81

3.8.2 Stress-Strain Relationship of PZT Patch Subjected to 3D Loading85

3.8.3 3D Differential Equations86

3.8.4 Solution to 3D Differential Equations87

3.8.5 Active Part of Solution89

3.8.6 Stress-Strain Relationships in Presence of Electric Fields90

3.8.7 Formulation of Structural Responses and Impedances91

3.8.8 EM Admittance Formulation for M-Functioning PZT Patches96

3.8.9 Modifications of Linear Impedance Formulations for Case Studies98

3.8.10 Results and Discussions104

3.9 FE Modeling of EMI Technique Using Coupled Field Element106

3.9.1 Review on FE Modeling of PZT-Structure Interaction106

3.9.2 Inclusion of Induced Strain Actuator in FE Model108

3.9.3 Comparison of FE Model with Existing Impedance-Based Analytical Model and Experimental Tests109

3.9.4 FE Modeling of PZT-Structure Interaction115

References124

Exercise 3.1126

Exercise 3.2127

Exercise 3.3128

4 Damage Quantification Using EMI Technique129

4.1 Extraction of Structural Mechanical Impedance from Admittance Signatures129

4.2 System Parameter Identification from Extracted Impedance Spectra132

4.3 Damage Diagnosis in Aerospace and Mechanical Systems137

4.4 Extension to Damage Diagnosis in Civil-Structural Systems144

4.5 Identification of Higher Modal Frequencies from Conductance Signatures146

4.6 Numerical Example150

4.7 Experimental Verifieation155

4.7.1 Damage Location Identification158

4.7.2 Effect of Number of Sensitive Modes159

4.7.3 Effect of Frequency Range161

4.8 Advantages of Modal Approach163

4.9 Limitations and Concerns of Modal Approach163

4.10 Damage Identification Using EMI and Evolutionary Programming164

4.11 EMI of PZT Transducers165

4.12 Mechanical Impedance of Damaged Structure167

4.13 Damage Identification Method173

4.13.1 EP Algorithm173

4.13.2 Fitness Function174

4.14 Experimental Set-up175

4.15 Experimental Results and Numerical Predictions177

4.15.1 Damage Identification Results181

4.15.2 Summary184

References184

Exercise 4.1186

Exercise 4.2186

5 Strength and Damage Assessment of Concrete187

5.1 Introduction187

5.2 Conventional NDE Techniques for Concrete187

5.3 Concrete Strength Evaluation Using EMI Technique190

5.4 Extraction of Damage-Sensitive Concrete Parameters from Admittance Signatures194

5.5 Monitoring Concrete Curing Using Extracted Impedance Parameters198

5.6 Establishment of Impedance-Based Damage Model for Concrete201

5.6.1 Definition of Damage Variable201

5.6.2 Damage Variable Based on the Theory of Fuzzy Sets204

5.6.3 Fuzzy Probabilistic Damage Calibration of Piezo-Impedance Transducers207

5.7 Embedded PZT Patches and Issues Involved210

5.8 Experimental Set-up211

5.8.1 Methods to Fabricate Embeddable PZT211

5.8.2 Fabrication of Robust Embeddable PZT Patch213

5.9 Efficiency of Embedded PZT216

5.9.1 Comparison Test216

5.9.2 Monitoring Test217

5.10 Damage Analysis Using Statistical Method218

References220

6 Integration of EMI Technique with Global Vibration Techniques223

6.1 Introduction223

6.2 Piezoelectric Materials as Dynamic Strain Sensors224

6.3 Determination of Strain Mode Shapes Using Surface-Bonded PZT Patches226

6.4 Identification and Localization of Incipient Damage230

6.5 Localization of Moderate and Severe Damages Using Global Vibration Techniques234

6.5.1 For 1D Structures(Beams)234

6.5.2 For 2D Structures(Plates)236

6.6 Severity of Damage239

References243

7 Sensing Region,Load Monitoring and Practical Issues245

7.1 Sensing Region of PZT Patches245

7.1.1 Introduction245

7.1.2 Theoretical Modeling246

7.1.3 Experimental Verification258

7.1.4 Results and Discussions259

7.1.5 Summary264

7.2 PZT Patches for Load Monitoring265

7.2.1 Introduction265

7.2.2 Effect of Stress in Structure265

7.2.3 Influence of Applied Load on EM Admittance Signatures266

7.2.4 Experimental Investigations and Discussions267

7.2.5 Efficiency of EM Admittance Signatures Using Statistical Index271

7.2.6 Summary275

7.3 Practical Issues Related to Application of EMI Technique in SHM275

7.3.1 Introduction275

7.3.2 Consistency of Admittance Signatures Acquired from PZT Patch276

7.3.3 Effects of Bonding Layer and Temperature282

7.3.4 Differentiating Temperature-Induced and Damage-Induced Signature Deviations291

7.3.5 Differentiating Damage in Host Structure and in PZT Patch293

7.3.6 Summary294

References295

8 Smart Beams:A Semi-Analytical Method299

8.1 Introduction299

8.2 Analysis of a Column Coupled with Distributed Piezoelectric Actuator302

8.2.1 Motion Equations303

8.2.2 Analytical Solutions for Displacement Feedback Control306

8.2.3 Semi-Analytical Solutions for Velocity Feedback Control312

8.2.4 Effects of Feedback Strategies on Motion Equations317

8.3 Numerical simulations318

8.3.1 Numerical Results for Displacement Feedback Control319

8.3.2 Numerical Results for Velocity Feedback Control325

8.4 Conclusions and Recommendations329

8.4.1 Conclusions329

8.4.2 Recommendations329

References330

9 Smart Plates and Shells333

9.1 Optimal Vibration Control using Genetic Algorithms333

9.1.1 Introduction333

9.1.2 Sensing and Actuating Equations335

9.1.3 Energy-Based Approach for Integrated Optimal Design343

9.1.4 General Formulation and Modified Real-Encoded GA345

9.1.5 Numerical Examples348

9.2 Optimal Excitation of Piezoelectric Plates and Shells362

9.2.1 Introduction362

9.2.2 Piezoelectric Actuated Plates363

9.2.3 Piezoelectric Actuated Cylindrical Shell370

9.2.4 Optimal Placement of PZT Actuator on Plate374

9.2.5 Optimal Placement of PZT Actuator on Shell387

9.2.6 Discussions389

9.2.7 Summary391

References392

10 Cylindrical Shells with Piezoelectric Shear Actuators395

10.1 Introduction395

10.2 Governing Equations397

10.3 Non-Damping Vibration of Simply Supported Shell399

10.4 Active Vibration Control of Cylindrical Shell with PSAs401

10.5 Numerical Results and Discussions402

10.5.1 Steady-State Response Analysis403

10.5.2 Active Vibration Control407

10.6 Summary410

References410

11 Fiber Bragg Grating413

11.1 Introduction413

11.2 History of FBG414

11.3 Fabrication of FBG415

11.4 Optical Properties of Grating417

11.5 Thermal Properties of FBG420

11.6 Mechanical Properties of FBG421

11.7 Maximun Reflectivity of Bragg Grating422

11.8 Full Width at Half Maximum423

11.9 FBG Sensors424

11.9.1 Direct Sensing Using FBG424

11.9.2 Indirect Sensing by Embedded FBG425

11.10 FBG-Based Pressure/Strain Sensor427

11.11 FBG-Based Shear Force Sensor428

References435

12 Applications of Fiber Bragg Grating Sensors441

12.1 Introduction441

12.2 Pressure Monitoring at Foot Sole of Diabetic Patients441

12.3 Pressure and Temperature Monitoring in a Dental Splint445

12.3.1 Structure of FBG-Based Splint Sensor446

12.3.2 Experimental Results and Discussions447

12.4 Monitoring Civil Structures449

12.4.1 Sensing Approach449

12.4.2 Symmetrically Bonded FBG Sensor Arrays on Rebars449

12.4.3 Contact Force Measurement at Beam-Column Joint458

12.5 Multi-Component Force Measurement460

12.5.1 Basic Concept461

12.5.2 Two-Component Force Measurement462

12.5.3 2D Force Measurement466

12.5.4 3D Force Measurement467

12.6 Simultaneous Measurement of Pressure and Temperature472

12.6.1 Sensor Configuration and Working Principle472

12.6.2 Sensor Fabrication and Experimental Procedure475

12.7 Summary477

References478

13 Monitoring of Rocks and Underground Structures Using PZT and FBG Sensors481

13.1 Introduction481

13.2 Conventional Versus Smart Material Based Sensor Systems for LHR and SHM of Underground Structures482

13.3 Experimental Investigations on Rocks483

13.4 LHR by ESG and FBG Sensors485

13.4.1 Specimen 1485

13.4.2 Specimen 2487

13.5 SHM by PZT Transducers489

13.5.1 Specimen 1489

13.5.2 Specimen 2491

13.5.3 Specimen 3492

13.5.4 Extraction of Structural Mechanical Impedance493

13.5.5 Calibration of Extracted Parameters for Damage Quantification494

13.6 Robustness of PZT Transducers and FBG-Based Strain Gauges497

13.7 Potential Applications of Smart Sensors on Rock Structures497

References499

14 Ionic Polymer-Metal Composite and its Actuation Characteristics501

14.1 Introduction501

14.1.1 History and Characterizations501

14.1.2 Experimental Study and Physical Modeling503

14.1.3 Implemented and Potential Applications507

14.2 Bending Moment Capacity of IPMC507

14.2.1 Charge Redistribution507

14.2.2 Bending Moment512

14.3 Validation and Discussions520

14.4 Frequency Dependent Characteristics525

14.5 Summary529

References530

15 IPMC-Based Biomedical Applications533

15.1 Introduction533

15.2 IPMC Beam on Human Tissues534

15.2.1 Modeling of IPMC Beam on Human Tissues534

15.2.2 Illustrative Examples and Discussions536

15.3 IPMC Ring with Elastic Medium543

15.3.1 Problem Formulation543

15.3.2 Displacement Solutions546

15.3.3 Illustrative Examples548

15.4 IPMC Shell with Flowing Fluid554

15.4.1 Problem Formulation554

15.4.2 Wave Propagation Solutions559

15.4.3 Illustrative Example and Discussion563

15.5 Summary565

References567

16 Bone Characterization Using Piezo-Transducers as Bio-Medical Sensors569

16.1 Introduction569

16.2 Monitoring Changes in Bone Density572

16.3 Monitoring Healing Process in Bones575

16.4 FE Simulation of EMI Technique on Bones577

References580

17 Future of Smart Materials583

17.1 Past and Future Developments of IPMC583

17.2 PZT/MFC in Energy Harvesting585

17.2.1 Current Research in Energy Harvesting using Piezoelectric Materials585

17.2.2 Main Concerns for Future Practical Applications587

17.3 Futuristic Applications of Smart Materials591

References592

Appendix595

Index613

热门推荐