图书介绍

常微分方程及其应用 理论与模型2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

常微分方程及其应用 理论与模型
  • 周宇虹,罗建书编 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030301253
  • 出版时间:2010
  • 标注页数:213页
  • 文件大小:6MB
  • 文件页数:221页
  • 主题词:常微分方程-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

常微分方程及其应用 理论与模型PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 First-order Differential Equations1

1.1 Introduction1

Exercise 1.17

1.2 First-order Linear Differential Equations8

1.2.1 First-order Homogeneous Linear Differential Equations8

1.2.2 First-order Nonhomogeneous Linear Differential Equations11

1.2.3 Bernoulli Equations16

Exercise 1.218

1.3 Separable Equations19

1.3.1 Separable Equations19

1.3.2 Homogeneous Equations23

Exercise 1.326

1.4 Applications27

Module 1 The Spread of Technological Innovations27

Module 2 The Van Meegeren Art Forgeries30

1.5 Exact Equations35

1.5.1 Criterion for Exactness35

1.5.2 Integrating Factor39

Exercise 1.542

1.6 Existence and Uniqueness of Solutions43

Exercise 1.650

Chapter 2 Second-order Differential Equations51

2.1 General Solutions of Homogeneous Second-order Linear Equations51

Exercise 2.159

2.2 Homogeneous Second-order Linear Equations with Constant Coefficients60

2.2.1 The Characteristic Equation Has Distinct Real Roots61

2.2.2 The Characteristic Equation Has Repeated Roots62

2.2.3 The Characteristic Equation Has Complex Conjugate Roots63

Exercise 2.265

2.3 Nonhomogeneous Second-order Linear Equations66

2.3.1 Structure of General Solutions66

2.3.2 Method of Variation of Parameters68

2.3.3 Methods for Some Special Form of the Nonhomogeneous Term g(t)70

Exercise 2.376

2.4 Applications77

Module 1 An Atomic Waste Disposal Problem77

Module 2 Mechanical Vibrations82

Chapter 3 Linear Systems of Differential Equations90

3.1 Basic Concepts and Theorems90

Exercise 3.198

3.2 The Eigenvalue-Eigenvector Method of Finding Solutions99

3.2.1 The Characteristic Polynomial of A Has n Distinct Real Eigenvalues100

3.2.2 The Characteristic Polynomial of A Has Complex Eigenvalues101

3.2.3 The Characteristic Polynomial of A Has Equal Eigenvalues104

Exercise 3.2108

3.3 Fundamental Matrix Solution;Matrix-valued Exponential Function eAt109

Exercise 3.3113

3.4 Nonhomogeneous Equations;Variation of Parameters115

Exercise 3.4120

3.5 Applications121

Module 1 The Principle ofCompetitive Exclusion in Population Biology121

Module 2 A Model for the Blood Glucose Regular System127

Chapter 4 Laplace Transforms and Their Applications in Solving136

Differential Equations136

4.1 Laplace Transforms136

Exercise 4.1138

4.2 Properties of Laplace Transforms138

Exercise 4.2145

4.3 Inverse Laplace Transforms146

Exercise 4.3148

4.4 Solving Differential Equations by Laplace Transforms148

4.4.1 The Right-Hand Side of the Differential Equation is Discontinuous152

4.4.2 The Right-Hand Side of Differential Equation is an Impulsive Function154

Exerci8e 4.4156

4.5 Solving Systems of Differential Equations by Laplace Transforms157

Exercise 4.5159

Chapter 5 Introduction to the Stability Theory161

5.1 Introduction161

Exercise 5.1164

5.2 Stability of the Solutions of Linear System164

Exercise 5.2171

5.3 Geometrical Characteristics of Solutions of the System of Differential Equations173

5.3.1 Phase Space and Direction Field173

5.3.2 Geometric Characteristics of the Orbits near a Singular Point176

5.3.3 Stability of Singular Points180

Exercise 5.3183

5.4 Applications183

Module 1 Volterra's Principle183

Module 2 Mathematical Theories of War188

Answers to Selected Exercises196

References209

附录 软件包Iode简介210

热门推荐