图书介绍
HIGHER MATHEMATICS FOR ENGINEERS AND PHYSICISTS SECOND EDITION2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- IVAN S. SOKOLNIKOFF AND ELIZABETH S. SOKOLNIKOFF 著
- 出版社: INC.
- ISBN:
- 出版时间:1941
- 标注页数:587页
- 文件大小:16MB
- 文件页数:595页
- 主题词:
PDF下载
下载说明
HIGHER MATHEMATICS FOR ENGINEERS AND PHYSICISTS SECOND EDITIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER Ⅰ INFINITE SERIES1
1.Fundamental Concepts1
2.Series of Constants6
3.Series of Positive Terms9
4.Alternating Series15
5.Series of Positive and Negative Terms16
6.Algebra of Series21
7.Continuity of Functions.Uniform Convergence23
8.Properties of Uniformly Convergent Series28
9.Power Series30
10.Properties of Power Series33
11.Expansion of Functions in Power Series35
12.Application of Taylor's Formula41
13.Evaluation of Definite Integrals by Means of Power Series43
14.Rectification of Ellipse.Elliptic Integrals47
15.Discussion of Elliptic Integrals48
16.Approximate Formulas in Applied Mathematics55
CHAPTER Ⅱ FOURIER SERIES63
17.Preliminary Remarks63
18.Dirichlet Conditions.Derivation of Fourier Coefficients65
19.Expansion of Functions in Fourier Series67
20.Sine and Cosine Series73
21.Extension of Interval of Expansion76
22.Complex Form of Fourier Series78
23.Differentiation and Integration of Fourier Series80
24.Orthogonal Functions81
CHAPTER Ⅲ SOLUTION OF EQUATIONS83
25.Graphical Solutions83
26.Algebraic Solution of Cubic86
27.Some Algebraic Theorems92
28.Horner's Method95
29.Newton's Method97
30.Determinants of the Second and Third Order102
31.Determinants of the nth Order106
32.Properties of Determinants107
33.Minors110
34.Matrices and Linear Dependence114
35.Consistent and Inconsistent Systems of Equations117
CHAPTER Ⅳ PARTIAL DIFFERENTIATION123
36.Functions of Several Variables123
37.Partial Derivatives125
38.Total Differential127
39.Total Derivatives130
40.Euler's Formula136
41.Differentiation of Implicit Functions137
42.Directional Derivatives143
43.Tangent Plane and Normal Line to a Surface146
44.Space Curves149
45.Directional Derivatives in Space151
46.Higher Partial Derivatives153
47.Taylor's Series for Functions of Two Variables155
48.Maxima and Minima of Functions of One Variable158
49.Maxima and Minima of Functions of Several Variables160
50.Constrained Maxima and Minima163
51.Differentiation under the Integral Sign167
CHAPTER Ⅴ MULTIPLE INTEGRALS173
52.Definition and Evaluation of the Double Integral173
53.Geometric Interpretation of the Double Integral177
54.Triple Integrals179
55.Jacobians.Change of Variable183
56.Spherical and Cylindrical Coordinates185
57.Surface Integrals188
58.Green's Theorem in Space191
59.Symmetrical Form of Green's Theorem194
CHAPTER Ⅵ LINE INTEGRAL197
60.Definition of Line Integral197
61.Area of a Closed Curve199
62.Green's Theorem for the Plane202
63.Properties of Line Integrals206
64.Multiply Connected Regions212
65.Line Integrals in Space215
66.Illustrations of the Application of the Line Integrals217
CHAPTER Ⅶ ORDINARY DIFFERENTIAL EQUATIONS225
67.Preliminary Remarks225
68.Remarks on Solutions227
69.Newtonian Laws231
70.Simple Harmonic Motion233
71.Simple Pendulum234
72.Further Examples of Derivation of Differential Equations239
73.Hyperbolic Functions247
74.First-order Differential Equations256
75.Equations with Separable Variables257
76.Homogeneous Differential Equations259
77.Exact Differential Equations262
78.Integrating Factors265
79.Equations of the First Order in Which One of the Variables Does Not Occur Explicitly267
80.Differential Equations of the Second Order269
81.Gamma Functions272
82.Orthogonal Trajectories277
83.Singular Solutions279
84.Linear Differential Equations283
85.Linear Equations of the First Order284
86.A Non-linear Equation Reducible to Linear Form(Bernoulli's Equation)286
87.Linear Differential Equations of the nth Order287
88.Some General Theorems291
89.The Meaning of the Operator 1/Dn+a1Dn-1+...+an-1D+anf(x)295
90.Oscillation of a Spring and Discharge of a Condenser299
91.Viscous Damping302
92.Forced Vibrations308
93.Resonance310
94.Simultaneous Differential Equations312
95.Linear Equations with Variable Coefficients315
96.Variation of Parameters318
97.The Euler Equation322
98.Solution in Series325
99.Existence of Power Series Solutions329
100.Bessel's Equation332
101.Expansion in Series of Bessel Functions339
102.Legendre's Equation342
103.Numerical Solution of Differential Equations346
CHAPTER Ⅷ PARTIAL DIFFERENTIAL EQUATIONS350
104.Preliminary Remarks350
105.Elimination of Arbitrary Functions351
106.Integration of Partial Differential Equations353
107.Linear Partial Differential Equations with Constant Coefficients357
108.Transverse Vibration of Elastic String361
109.Fourier Series Solution364
110.Heat Conduction367
111.Steady Heat Flow369
112.Variable Heat Flow373
113.Vibration of a Membrane377
114.Laplace's Equation382
115.Flow of Electricity in a Cable386
CHAPTER Ⅸ VECTOR ANALYSIS392
116.Scalars and Vectors392
117.Addition and Subtraction of Vectors393
118.Decomposition of Vectors.Base Vectors396
119.Multiplication of Vectors399
120.Relations between Scalar and Vector Products402
121.Applications of Scalar and Vector Products404
122.Differential Operators406
123.Vector Fields409
124.Divergence of a Vector411
125.Divergence Theorem415
126.Curl of a Vector418
127.Stokes's Theorem421
128.Two Important Theorems422
129.Physical Interpretation of Divergence and Curl423
130.Equation of Heat Flow425
131.Equations of Hydrodynamics428
132.Curvilinear Coordinates433
CHAPTER Ⅹ COMPLEX VARIABLE133
133.Complex Numbers440
134.Elementary Functions of a Complex Variable444
135.Properties of Functions of a Complex Variable448
136.Integration of Complex Functions453
137.Cauchy's Integral Theorem455
138.Extension of Cauchy's Theorem455
139.The Fundamental Theorem of Integral Calculus457
140.Cauchy's Integral Formula461
141.Taylor's Expansion464
142.Conformal Mapping465
143.Method of Conjugate Functions467
144.Problems Solvable by Conjugate Functions470
145.Examples of Conformal Maps471
146.Applications of Conformal Representation479
CHAPTER ⅩⅠ PROBABILITY492
147.Fundamental Notions492
148.Independent Events495
149.Mutually Exclusive Events497
150.Expectation500
151.Repeated and Independent Trials501
152.Distribution Curve504
153.Stirling's Formula508
154.Probability of the Most Probable Number511
155.Approximations to Binomial Law512
156.The Error Function516
157.Precision Constant.Probable Error521
CHAPTER ⅩⅡ EMPIRICAL FORMULAS AND CURVE FITTING525
158.Graphical Method525
159.Differences527
160.Equations That Represent Special Types of Data528
161.Constants Determined by Method of Averages534
162.Method of Least Squares536
163.Method of Moments544
164.Harmonic Analysis545
165.Interpolation Formulas550
166.Lagrange's Interpolation Formula552
167.Numerical Integration554
168.A More General Formula558
ANSWERS561
INDEX575
热门推荐
- 2267868.html
- 366230.html
- 1723907.html
- 1608531.html
- 1299041.html
- 3506979.html
- 3744794.html
- 1980676.html
- 3220890.html
- 3721934.html
- http://www.ickdjs.cc/book_1449719.html
- http://www.ickdjs.cc/book_3539799.html
- http://www.ickdjs.cc/book_2946965.html
- http://www.ickdjs.cc/book_1434415.html
- http://www.ickdjs.cc/book_1559557.html
- http://www.ickdjs.cc/book_1200208.html
- http://www.ickdjs.cc/book_3137629.html
- http://www.ickdjs.cc/book_2576160.html
- http://www.ickdjs.cc/book_3721680.html
- http://www.ickdjs.cc/book_3355338.html