图书介绍

非线性光纤光学 第5版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

非线性光纤光学 第5版
  • (美)阿戈沃著 著
  • 出版社: 世界图书北京出版公司
  • ISBN:9787510098536
  • 出版时间:2015
  • 标注页数:629页
  • 文件大小:96MB
  • 文件页数:648页
  • 主题词:光纤通信-非线性光学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

非线性光纤光学 第5版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Introduction1

1.1 Historical Perspective1

1.2 Fiber Characteristics3

1.2.1 Material and Fabrication4

1.2.2 Fiber Losses5

1.2.3 Chromatic Dispersion6

1.2.4 Polarization-Mode Dispersion11

1.3 Fiber Nonlinearities15

1.3.1 Nonlinear Refraction15

1.3.2 Stimulated Inelastic Scattering16

1.3.3 Importance of Nonlinear Effects18

1.4 Overview19

Problems21

References22

CHAPTER 2 Pulse Propagation in Fibers27

2.1 Maxwell's Equations27

2.2 Fiber Modes30

2.2.1 Eigenvalue Equation30

2.2.2 Single-Mode Condition31

2.2.3 Characteristics of the Fundamental Mode32

2.3 Pulse-Propagation Equation34

2.3.1 Nonlinear Pulse Propagation34

2.3.2 Higher-Order Nonlinear Effects39

2.3.3 Raman Response Function and its Impact41

2.3.4 Extension to Multimode Fibers45

2.4 Numerical Methods47

2.4.1 Split-Step Fourier Method47

2.4.2 Finite-Difference Methods51

Problems52

References53

CHAPTER 3 Group-Velocity Dispersion57

3.1 Different Propagation Regimes57

3.2 Dispersion-Induced Pulse Broadening59

3.2.1 Gaussian Pulses60

3.2.2 Chirped Gaussian Pulses62

3.2.3 Hyperbolic-Secant Pulses64

3.2.4 Super-Gaussian Pulses65

3.2.5 Experimental Results67

3.3 Third-Order Dispersion68

3.3.1 Evolution of Chirped Gaussian Pulses69

3.3.2 Broadening Factor71

3.3.3 Arbitrary-Shape Pulses74

3.3.4 Ultrashort-Pulse Measurements76

3.4 Dispersion Management78

3.4.1 GVD-Induced Limitations78

3.4.2 Dispersion Compensation80

3.4.3 Compensation of Third-Order Dispersion81

Problems83

References84

CHAPTER 4 Self-Phase Modulation87

4.1 SPM-Induced Spectral Changes87

4.1.1 Nonlinear Phase Shift88

4.1.2 Changes in Pulse Spectra90

4.1.3 Effect of Pulse Shape and Initial Chirp93

4.1.4 Effect of Partial Coherence96

4.2 Effect of Group-Velocity Dispersion98

4.2.1 Pulse Evolution98

4.2.2 Broadening Factor100

4.2.3 Optical Wave Breaking102

4.2.4 Experimental Results105

4.2.5 Effect of Third-Order Dispersion106

4.2.6 SPM Effects in Fiber Amplifiers108

4.3 Semianalytic Techniques111

4.3.1 Moment Method111

4.3.2 Variational Method112

4.3.3 Specific Analytic Solutions114

4.4 Higher-Order Nonlinear Effects115

4.4.1 Self-Steepening116

4.4.2 Effect of GVD on Optical Shocks119

4.4.3 Intrapulse Raman Scattering121

Problems124

References125

CHAPTER 5 Optical Solitons129

5.1 Modulation Instability129

5.1.1 Linear Stability Analysis130

5.1.2 Gain Spectrum131

5.1.3 Experimental Results133

5.1.4 Ultrashort Pulse Generation135

5.1.5 Impact on Lightwave Systems137

5.2 Fiber Solitons139

5.2.1 Inverse Scattering Method140

5.2.2 Fundamental Soliton142

5.2.3 Second and Higher-Order Solitons144

5.2.4 Experimental Confirmation147

5.2.5 Soliton Stability148

5.3 Other Types of Solitons151

5.3.1 Dark Solitons151

5.3.2 Bistable Solitons154

5.3.3 Dispersion-Managed Solitons156

5.3.4 Optical Similaritons156

5.4 Perturbation of Solitons159

5.4.1 Perturbation Methods159

5.4.2 Fiber Losses161

5.4.3 Soliton Amplification163

5.4.4 Soliton Interaction166

5.5 Higher-Order Effects170

5.5.1 Moment Equations for Pulse Parameters170

5.5.2 Third-Order Dispersion172

5.5.3 Self-Steepening174

5.5.4 Intrapulse Raman Scattering176

5.5.5 Propagation of Femtosecond Pulses181

Problems183

References184

CHAPTER 6 Polarization Effects193

6.1 Nonlinear Birefringence193

6.1.1 Origin of Nonlinear Birefringence194

6.1.2 Coupled-Mode Equations196

6.1.3 Elliptically Birefringent Fibers197

6.2 Nonlinear Phase Shift199

6.2.1 Nondispersive XPM199

6.2.2 Optical Kerr Effect200

6.2.3 Pulse Shaping204

6.3 Evolution of Polarization State206

6.3.1 Analytic Solution207

6.3.2 Poincaré-Sphere Representation209

6.3.3 Polarization Instability212

6.3.4 Polarization Chaos214

6.4 Vector Modulation Instability215

6.4.1 Low-Birefringence Fibers215

6.4.2 High-Birefringence Fibers218

6.4.3 Isotropic Fibers220

6.4.4 Experimental Results221

6.5 Birefringence and Solitons224

6.5.1 Low-Birefringence Fibers225

6.5.2 High-Birefringence Fibers226

6.5.3 Soliton-Dragging Logic Gates229

6.5.4 Vector Solitons230

6.6 Random Birefringence233

6.6.1 Polarization-Mode Dispersion233

6.6.2 Vector Form of the NLS Equation234

6.6.3 Effects of PMD on Solitons236

Problems239

References240

CHAPTER 7 Cross-Phase Modulation245

7.1 XPM-Induced Nonlinear Coupling246

7.1.1 Nonlinear Refractive Index246

7.1.2 Coupled NLS Equations247

7.2 XPM-Induced Modulation Instability248

7.2.1 Linear Stability Analysis249

7.2.2 Experimental Results251

7.3 XPM-Paired Solitons252

7.3.1 Bright-Dark Soliton Pair252

7.3.2 Bright-Gray Soliton Pair254

7.3.3 Periodic Solutions255

7.3.4 Multiple Coupled NLS Equations256

7.4 Spectral and Temporal Effects258

7.4.1 Asymmetric Spectral Broadening259

7.4.2 Asymmetric Temporal Changes264

7.4.3 Higher-Order Nonlinear Effects267

7.5 Applications of XPM268

7.5.1 XPM-Induced Pulse Compression268

7.5.2 XPM-Induced Optical Switching270

7.5.3 XPM-Induced Nonreciprocity272

7.6 Polarization Effects274

7.6.1 Vector Theory of XPM274

7.6.2 Polarization Evolution275

7.6.3 Polarization-Dependent Spectral Broadening278

7.6.4 Pulse Trapping and Compression280

7.6.5 XPM-Induced Wave Breaking282

7.7 XPM Effects in Birefringent Fibers284

7.7.1 Fibers with Low Birefringence284

7.7.2 Fibers with High Birefringence287

Problems289

References290

CHAPTER 8 Stimulated Raman Scattering295

8.1 Basic Concepts295

8.1.1 Raman-Gain Spectrum296

8.1.2 Raman Threshold297

8.1.3 Coupled Amplitude Equations300

8.1.4 Effect of Four-Wave Mixing303

8.2 Quasi-Continuous SRS305

8.2.1 Single-Pass Raman Generation305

8.2.2 Raman Fiber Lasers307

8.2.3 Raman Fiber Amplifiers310

8.2.4 Raman-Induced Crosstalk315

8.3 SRS with Short Pump Pulses316

8.3.1 Pulse-Propagation Equations317

8.3.2 Nondispersive Case318

8.3.3 Effects of GVD320

8.3.4 Raman-Induced Index Changes323

8.3.5 Experimental Results325

8.3.6 Synchronously Pumped Raman Lasers328

8.3.7 Short-Pulse Raman Amplification330

8.4 Soliton Effects331

8.4.1 Raman Solitons331

8.4.2 Raman Soliton Lasers335

8.4.3 Soliton-Effect Pulse Compression338

8.5 Polarization Effects339

8.5.1 Vector Theory of Raman Amplification339

8.5.2 PMD Effects on Raman Amplification343

Problems346

References347

CHAPTER 9 Stimulated Brillouin Scattering353

9.1 Basic Concepts353

9.1.1 Physical Process354

9.1.2 Brillouin-Gain Spectrum354

9.2 Quasi-CW SBS358

9.2.1 Brillouin Threshold358

9.2.2 Polarization Effects359

9.2.3 Techniques for Controlling the SBS Threshold360

9.2.4 Experimental Results363

9.3 Brillouin-Fiber Amplifiers366

9.3.1 Gain Saturation366

9.3.2 Amplifier Design and Applications367

9.4 SBS Dynamics370

9.4.1 Coupled Amplitude Equations370

9.4.2 SBS with Q-Switched Pulses372

9.4.3 SBS-Induced Index Changes376

9.4.4 Relaxation Oscillations380

9.4.5 Modulation Instability and Chaos382

9.5 Brillouin-Fiber Lasers384

9.5.1 CW Operation384

9.5.2 Pulsed Operation388

Problems391

References392

CHAPTER 10 Four-Wave Mixing397

10.1 Origin of Four-Wave Mixing397

10.2 Theory of Four-Wave Mixing399

10.2.1 Coupled Amplitude Equations400

10.2.2 Approximate Solution401

10.2.3 Effect of Phase Matching402

10.2.4 Ultrafast Four-Wave Mixing404

10.3 Phase-Matching Techniques405

10.3.1 Physical Mechanisms405

10.3.2 Phase Matching in Multimode Fibers406

10.3.3 Phase Matching in Single-Mode Fibers409

10.3.4 Phase Matching in Birefringent Fibers414

10.4 Parametric Amplification417

10.4.1 Review of Early Work417

10.4.2 Gain Spectrum and Its Bandwidth418

10.4.3 Single-Pump Configuration421

10.4.4 Dual-Pump Configuration425

10.4.5 Effects of Pump Depletion430

10.5 Polarization Effects431

10.5.1 Vector Theory of Four-Wave Mixing432

10.5.2 Polarization Dependence of Parametric Gain434

10.5.3 Linearly and Circularly Polarized Pumps437

10.5.4 Effect of Residual Fiber Birefringence439

10.6 Applications of Four-Wave Mixing443

10.6.1 Parametric Oscillators443

10.6.2 Ultrafast Signal Processing445

10.6.3 Quantum Correlation and Noise Squeezing447

10.6.4 Phase-Sensitive Amplification449

Problems451

References452

CHAPTER 11 Highly Nonlinear Fibers457

11.1 Nonlinear Parameter457

11.1.1 Units and Values of n2458

11.1.2 SPM-Based Techniques459

11.1.3 XPM-Based Technique462

11.1.4 FWM-Based Technique463

11.1.5 Variations in n2 Values464

11.2 Fibers with Silica Cladding467

11.3 Tapered Fibers with Air Cladding469

11.4 Microstructured Fibers474

11.4.1 Design and Fabrication474

11.4.2 Modal and Dispersive Properties476

11.4.3 Hollow-Core Photonic Crystal Fibers478

11.4.4 Bragg Fibers480

11.5 Non-Silica Fibers481

11.5.1 Lead-Silicate Fibers482

11.5.2 Chalcogenide Fibers485

11.5.3 Bismuth-Oxide Fibers486

11.6 Pulse Propagation in Narrow-Core Fibers487

11.6.1 Vectorial Theory487

11.6.2 Frequency-Dependent Mode Profiles489

Problems491

References492

CHAPTER 12 Novel Nonlinear Phenomena497

12.1 Soliton Fission and Dispersive Waves497

12.1.1 Fission of Second-and Higher-Order Solitons498

12.1.2 Generation of Dispersive Waves501

12.2 Intrapulse Raman Scattering506

12.2.1 Enhanced RIFS Through Soliton Fission506

12.2.2 Cross-correlation Technique510

12.2.3 Wavelength Tuning through RIFS512

12.2.4 Effects of Birefringence514

12.2.5 Suppression of Raman-Induced Frequency Shifts516

12.2.6 Soliton Dynamics Near a Zero-Dispersion Wavelength520

12.2.7 Multipeak Raman Solitons523

12.3 Four-Wave Mixing526

12.3.1 Role of Fourth-Order Dispersion526

12.3.2 Role of Fiber Birefringence527

12.3.3 Parametric Amplifiers and Wavelength Converters531

12.3.4 Tunable Fiber-Optic Parametric Oscillators532

12.4 Second-Harmonic Generation534

12.4.1 Physical Mechanisms534

12.4.2 Thermal Poling and Quasi-Phase Matching536

12.4.3 SHG Theory539

12.5 Third-Harmonic Generation541

12.5.1 THG in Highly Nonlinear Fibers541

12.5.2 Effects of Group-Velocity Mismatch543

12.5.3 Effects of Fiber Birefringence545

Problems546

References547

CHAPTER 13 Supercontinuum Generation553

13.1 Pumping with Picosecond Pulses553

13.1.1 Nonlinear Mechanisms554

13.1.2 Experimental Progress After 2000556

13.2 Pumping with Femtosecond Pulses559

13.2.1 Microstructured Silica Fibers559

13.2.2 Microstructured Nonsilica Fibers563

13.3 Temporal and Spectral Evolutions566

13.3.1 Numerical Modeling of Supercontinuum566

13.3.2 Role of Cross-Phase Modulation570

13.3.3 XPM-Induced Trapping573

13.3.4 Role of Four-Wave Mixing577

13.4 CW or Quasi-CW Pumping579

13.4.1 Nonlinear Mechanisms579

13.4.2 Experimental Progress582

13.5 Polarization Effects585

13.5.1 Birefringent Microstructured Fibers586

13.5.2 Nearly Isotropic Fibers587

13.5.3 Nonlinear Polarization Rotation in Isotropic Fibers589

13.6 Coherence Properties590

13.6.1 Spectral-Domain Degree of Coherence591

13.6.2 Techniques for Improving Coherence594

13.6.3 Spectral Incoherent Solitons596

13.7 Optical Rogue Waves598

13.7.1 L-Shaped Statistics of Pulse-to-Pulse Fluctuations599

13.7.2 Techniques for Controlling Rogue-Wave Statistics600

13.7.3 Modulation Instability Revisited602

Problems606

References607

Appendix A System of Units613

Appendix B Numerical Code for the NLS Equation615

Appendix C List of Acronyms619

Index621

热门推荐