图书介绍

算术代数2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

算术代数
  • 著者Bhubaneswar Mishra 著
  • 出版社: 北京:科学出版社
  • ISBN:7030089073
  • 出版时间:2001
  • 标注页数:416页
  • 文件大小:70MB
  • 文件页数:430页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

算术代数PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Prologue:Algebra and Algorithms1

1.2 Motivations4

1.2.1 Constructive Algebra5

1.2.2 Algorithmic and Computational Algebra6

1.2.3 Symbolic Computation7

1.2.4 Applications9

1.3 Algorithmic Notations13

1.3.1 Data Structures13

1.3.2 Control Structures15

1.4 Epilogue18

Bibliographic Notes20

2 Algebraic Preliminaries23

2.1 Introduction to Rings and Ideals23

2.1.1 Rings and Ideals26

2.1.2 Homomorphism,Contraction and Extension31

2.1.3 Ideal Operations33

2.2 Polynomial Rings35

2.2.1 Dickson's Lemma36

2.2.2 Admissible Orderings on Power Products39

2.3 Gr?bner Bases44

2.3.1 Gr?bner Bases in K[x1,x2,...,xn]46

2.3.2 Hilbert's Basis Theorem47

2.3.3 Finite Gr?bner Bases49

2.4 Modules and Syzygies49

2.5 S-Polynomials55

Problems60

Solutions to Selected Problems63

Bibliographic Notes69

3 Computational Ideal Theory71

3.1 Introduction71

3.2 Strongly Computable Ring72

3.2.1 Example:Computable Field73

3.2.2 Example:Ring of Integers76

3.3 Head Reductions and Gr?bner Bases80

3.3.1 Algorithm to Compute Head Reduction83

3.3.2 Algorithm to Compute Gr?bner Bases84

3.4 Detachability Computation87

3.4.1 Expressing with the Gr?bner Basis88

3.4.2 Detachability92

3.5 Syzygy Computation93

3.5.1 Syzygy of a Gr?bner Basis:Special Case93

3.5.2 Syzygy of a Set:General Case98

3.6 Hilbert's Basis Theorem:Revisited102

3.7 Applications of Gr?bner Bases Algorithms103

3.7.1 Membership103

3.7.2 Congruence,Subideal and Ideal Equality103

3.7.3 Sum and Product104

3.7.4 Intersection105

3.7.5 Quotient106

Problems108

Solutions to Selected Problems118

Bibliographic Notes130

4 Solving Systems of Polynomial Equations133

4.1 Introduction133

4.2 Triangular Set134

4.3 Some Algebraic Geometry138

4.3.1 Dimension of an Ideal141

4.3.2 Solvability:Hilbert's Nullstellensatz142

4.3.3 Finite Solvability145

4.4 Finding the Zeros149

Problems152

Solutions to Selected Problems157

Bibliographic Notes165

5 Characteristic Sets167

5.1 Introduction167

5.2 Pseudodivision and Successive Pseudodivision168

5.3 Characteristic Sets171

5.4 Properties of Characteristic Sets176

5.5 Wu-Ritt Process178

5.6 Computation181

5.7 Geometric Theorem Proving186

Problems189

Solutions to Selected Problems192

Bibliographic Notes196

6 An Algebraic Interlude199

6.1 Introduction199

6.2 Unique Factorization Domain199

6.3 Principal Ideal Domain207

6.4 Euclidean Domain208

6.5 Gauss Lemma211

6.6 Strongly Computable Euclidean Domains212

Problems216

Solutions to Selected Problems220

Bibliographic Notes223

7 Resultants and Subresultants225

7.1 Introduction225

7.2 Resultants227

7.3 Homomorphisms and Resultants232

7.3.1 Evaluation Homomorphism234

7.4 Repeated Factors in Polynomials and Discriminants238

7.5 Determinant Polynomial241

7.5.1 Pseudodivision:Revisited244

7.5.2 Homomorphism and Pseudoremainder246

7.6 Polynomial Remainder Sequences247

7.7 Subresultants250

7.7.1 Subresultants and Common Divisors255

7.8 Homomorphisms and Subresultants262

7.9 Subresultant Chain265

7.10 Subresultant Chain Theorem274

7.10.1 Habicht's Theorem274

7.10.2 Evaluation Homomorphisms276

7.10.3 Subresultant Chain Theorem279

Problems283

Solutions to Selected Problems291

Bibliographic Notes296

8 Real Algebra297

8.1 Introduction297

8.2 Real Closed Fields298

8.3 Bounds on the Roots306

8.4 Sturm's Theorem309

8.5 Real Algebraic Numbers315

8.5.1 Real Algebraic Number Field316

8.5.2 Root Separation,Thom's Lemma and Representation319

8.6 Real Geometry333

8.6.1 Real Algebraic Sets337

8.6.2 Delineability339

8.6.3 Tarski-Seidenberg Theorem345

8.6.4 Representation and Decomposition of Semialgebraic Sets347

8.6.5 Cylindrical Algebraic Decomposition348

8.6.6 Tarski Geometry354

Problems361

Solutions to Selected Problems372

Bibliographic Notes381

Appendix A:Matrix Algebra385

A.1 Matrices385

A.2 Determinant386

A.3 Linear Equations388

Bibliography391

Index409

热门推荐