图书介绍

凸优化2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

凸优化
  • (美)鲍迪(BoydS.)著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7510061356
  • 出版时间:2013
  • 标注页数:716页
  • 文件大小:79MB
  • 文件页数:729页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

凸优化PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Mathematical optimization1

1.2 Least-squares and linear programming4

1.3 Convex optimization7

1.4 Nonlinear optimization9

1.5 Outline11

1.6 Notation14

Bibliography16

Ⅰ Theory19

2 Convex sets21

2.1 Affine and convex sets21

2.2 Some important examples27

2.3 Operations that preserve convexity35

2.4 Generalized inequalities43

2.5 Separating and supporting hyperplanes46

2.6 Dual cones and generalized inequalities51

Bibliography59

Exercises60

3 Convex functions67

3.1 Basic properties and examples67

3.2 Operations that preserve convexity79

3.3 The conjugate function90

3.4 Quasiconvex functions95

3.5 Log-concave and log-convex functions104

3.6 Convexity with respect to generalized inequalities108

Bibliography112

Exercises113

4 Convex optimization problems127

4.1 Optimization problems127

4.2 Convex optimization136

4.3 Linear optimization problems146

4.4 Quadratic optimization problems152

4.5 Geometric programming160

4.6 Generalized inequality constraints167

4.7 Vector optimization174

Bibliography188

Exercises189

5 Duality215

5.1 The Lagrange dual function215

5.2 The Lagrange dual problem223

5.3 Geometric interpretation232

5.4 Saddle-point interpretation237

5.5 Optimality conditions241

5.6 Perturbation and sensitivity analysis249

5.7 Examples253

5.8 Theorems of alternatives258

5.9 Generalized inequalities264

Bibliography272

Exercises273

Ⅱ Applications289

6 Approximation and fitting291

6.1 Norm approximation291

6.2 Least-norm problems302

6.3 Regularized approximation305

6.4 Robust approximation318

6.5 Function fitting and interpolation324

Bibliography343

Exercises344

7 Statistical estimation351

7.1 Parametric distribution estimation351

7.2 Nonparametric distribution estimation359

7.3 Optimal detector design and hypothesis testing364

7.4 Chebyshev and Chernoff bounds374

7.5 Experiment design384

Bibliography392

Exercises393

8 Geometric problems397

8.1 Projection on a set397

8.2 Distance between sets402

8.3 Euclidean distance and angle problems405

8.4 Extremal volume ellipsoids410

8.5 Centering416

8.6 Classification422

8.7 Placement and location432

8.8 Floor planning438

Bibliography446

Exercises447

Ⅲ Algorithms455

9 Unconstrained minimization457

9.1 Unconstrained minimization problems457

9.2 Descent methods463

9.3 Gradient descent method466

9.4 Steepest descent method475

9.5 Newton's method484

9.6 Self-concordance496

9.7 Implementation508

Bibliography513

Exercises514

10 Equality constrained minimization521

10.1 Equality constrained minimization problems521

10.2 Newton's method with equality constraints525

10.3 Infeasible start Newton method531

10.4 Implementation542

Bibliography556

Exercises557

11 Interior-point methods561

11.1 Inequality constrained minimization problems561

11.2 Logarithmic barrier function and central path562

11.3 The barrier method568

11.4 Feasibility and phase I methods579

11.5 Complexity analysis via self-concordance585

11.6 Problems with generalized inequalities596

11.7 Primal-dual interior-point methods609

11.8 Implementation615

Bibliography621

Exercises623

Appendices631

A Mathematical background633

A.1 Norms633

A.2 Analysis637

A.3 Functions639

A.4 Derivatives640

A.5 Linear algebra645

Bibliography652

B Problems involving two quadratic functions653

B.1 Single constraint quadratic optimization653

B.2 The S-procedure655

B.3 The field of values oftwo symmetric matrices656

B.4 Proofs of the strong duality results657

Bibliography659

C Numerical linear algebra background661

C.1 Matrix structure and algorithm complexity661

C.2 Solving linear equationswith factored matrices664

C.3 LU.Cholesky,and LDLT factorization668

C.4 Block elimination and Schur complements672

C.5 Solving underdetermined linear equations681

Bibliography684

References685

Notation697

Index701

热门推荐