图书介绍

液体火箭发动机燃烧过程建模与数值仿真2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

液体火箭发动机燃烧过程建模与数值仿真
  • 王振国编著 著
  • 出版社: 北京:国防工业出版社
  • ISBN:9787118110197
  • 出版时间:2016
  • 标注页数:382页
  • 文件大小:44MB
  • 文件页数:393页
  • 主题词:液体推进剂火箭发动机-燃烧过程-建立模型-英文;液体推进剂火箭发动机-燃烧过程-数值方法-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

液体火箭发动机燃烧过程建模与数值仿真PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Basic Configuration of Liquid Rocket Engines2

1.1.1 Propellant Feed System2

1.1.2 Thrust Chamber6

1.2 Internal Combustion Processes of Liquid Rocket Engines13

1.2.1 Start and Shutdown13

1.2.2 Combustion Process15

1.2.3 Performance Parameters in Working Process18

1.3 Characteristics and Development History of Numerical Simulation of the Combustion Process in Liquid Rocket Engines19

1.3.1 Benefits of Numencal Simulation of the Combustion Process in Liquid Rocket Engines19

1.3.2 Main Contents of Numerical Simulations of Liquid Rocket Engine Operating Process19

1.3.3 Development of Numerical Simulations of Combustion Process in Liquid Rocket Engines21

1.4 Governing Equations of Chemical Fluid Dynamics22

1.5 Outline of this Book24

References25

2 Physical Mechanism and Numerical Modeling of Liquid Propellant Atomization26

2.1 Types and Functions of Injectors in a Liquid Rocket Engine27

2.2 Atomization Mechanism of Liquid Propellant28

2.2.1 Formation of Static Liquid Droplet28

2.2.2 Breakup of Cylindrical Liquid Jet29

2.2.3 Liquid Sheet Breakup36

2.2.4 Droplet Secondary Breakup43

2.3 Characteristics of Atomization in Liquid Rocket Engines48

2.3.1 Distribution Function of the Droplet Size51

2.3.2 Mean Diameter and Characteristic Diameter53

2.3.3 Measurement of Spray Size Distribution55

2.4 Atomization Modeling for Liquid Rocket Engine Atomizers59

2.4.1 Straight-flow Injector60

2.4.2 Centrifugal Injector60

2.4.3 Impinging-stream Injectors64

2.4.4 Coaxial Shear Injector70

2.4.5 Coaxial Centrifugal Injectors70

2.5 Numerical Simulation of Liquid Propellant Atomization75

2.5.1 Theoretical Models of Liquid Propellant Atomization75

2.5.2 Quasi-fluid Models80

2.5.3 Particle Trajectory Models81

2.5.4 Simulation of Liquid Jet Atomization Using Interface Tracking Method85

2.5.5 Liquid Jet Structure-Varying Flow Conditions91

References94

3 Modeling of Droplet Evaporation and Combustion97

3.1 Theory for Quasi-Steady Evaporation and Combustion of a Single Droplet at Atmospheric Pressure97

3.1.1 Quasi-Steady Evaporation Theory for Single Droplet in the Static Gas without Combustion98

3.1.2 Quasi-Steady Evaporation Theory for Droplet in a Static Gas with Combustion103

3.1.3 Non-Combustion Evaporation Theory for a Droplet in a Convective Flow107

3.1.4 Evaporation Theory for a Droplet in a Convective Medium with Combustion108

3.2 Evaporation Model for a Single Droplet under High Pressure109

3.2.1 ZKS Droplet High Pressure Evaporation Theory110

3.2.2 Application of the Liquid Activity Coefficient to Calculate the Gas-Liquid Equilibrium at a High Pressure115

3.3 Subcritical Evaporation Response Characteristics of Propellant Droplet in Oscillatory Environments117

3.3.1 Physical Model118

3.3.2 Examples and the Analysis of Results120

3.4 Multicomponent Fuel Droplet Evaporation Model123

3.4.1 Simple Multicomponent Droplet Evaporation Model124

3.4.2 Continuous Thermoaynamics Model of Complex Multicomponent Mixture Droplet Evaporation135

3.5 Droplet Group Evaporation145

3.5.1 Definition of Group Combustion Number146

3.5.2 Droplet Group Combustion Model146

References149

4 Modding of Turbulence151

4.1 Turbulence Modeling in RANS152

4.1.1 Algebraic Model153

4.1.2 One-Equation Model154

4.1.3 Two-Equation Models156

4.1.4 Turbulence Model Modification161

4.1.5 Nonlinear Eddy Viscosity Model165

4.1.6 Reynolds-Stress Model170

4.1.7 Comments on the Models173

4.2 Theories and Equations of Large Eddy Simulation174

4.2.1 Philosophy behind LES174

4.2.2 LES Governing Equations175

4.2.3 Subgrid-Scale Model176

4.2.4 Hybrid RANS/LES Methods182

4.3 Two-Phase Turbulence Model187

4.3.1 Hinze-Tchen Algebraic Model for Particle Trbulence187

4.3.2 Two-Phase Turbulence Model k-ε-kp and k-εAp188

References189

5 Turbulent Combustion Model192

5.1 Average of Chemical Reaction Term192

5.2 Presumed PDF—Fast Chemistry Model for Diffusion Flame194

5.2.1 Concepts and Assumptions195

5.2.2 K-ε-Z-g Equations197

5.2.3 Probability Density Distribution Function197

5.2.4 Presumed PDF198

5.2.5 Truncated Gaussian PDF200

5.3 Finite Rate EBU—Arrhenius Model for Premixed Flames201

5.4 Moment-Equation Model202

5.4.1 Time-Averaged Chemical Reaction Rate203

5.4.2 Closure for the Moments203

5.5 Flamelet Model for Turbulent Combustion204

5.5.1 Diffusion Flamelet Model205

5.5.2 Premixed Flamelet Model206

5.6 Transported PDF Method for Turbulent Combustion208

5.6.1 Transport Equations of the Probability Density Function208

5.6.2 The Closure Problem of Turbulence PDF Equation211

5.6.3 Transport Equation for the Single-Point Joint PDF with Density-Weighted Average212

5.6.4 Solution Algorithm for the Transport Equation of Probability Density Function212

5.7 Large Eddy Simulation of Turbulent Combustion214

5.7.1 Governing Equations of Large Eddy Simulation for Turbulent Combustion214

5.7.2 Sub-Grid Scale Combustion Models218

References226

6 Heat Transfer Modeling and Simulation228

6.1 Convective Heat Transfer Model of Combustor Wall228

6.1.1 Model of Gas Convection Heat229

6.1.2 Convection Cooling Model232

6.2 Heat Conduction Model of Combustor Wall235

6.2.1 Fourier Heat Conduction Law235

6.2.2 1D Steady Heat Conduction235

6.2.3 2D Steady Heat Conduction237

6.2.4 Unsteady Heat Conduction237

6.3 Radiation Heat Transfer Model238

6.3.1 Basic Law of Radiation238

6.3.2 Empirical Model of Radiation Heat Flux Density Calculation245

6.3.3 Numerical Simulation of Combustion Heat Radiation246

References254

7 The Model of Combustion Instability255

7.1 Overview255

7.1.1 Behavior of Combustion Instability256

7.1.2 Classification of Combustion Instability257

7.1.3 Characteristics of Combustion Instability259

7.2 Acoustic Basis of Combustion Instability260

7.2.1 Rayleigh Criterion for Acoustic Oscillations Arising from Heat or Mass Supply260

7.2.2 Acoustic and Acoustic Oscillations261

7.2.3 Acoustic Modes in the Combustion Chamber263

7.2.4 Self-Excited Oscillations in Rocket Engines267

7.3 Response Characteristics of Combustion Process in Liquid Rocket Engines269

7.3.1 Response Characteristics of the Propellant Supply System269

7.3.2 Response Characteristics of Spray Atomization Process271

7.3.3 Response Characteristics of Droplet Evaporation Process272

7.4 Sensitive Time Delay Model n-τ272

7.4.1 Combustion Time Delay272

7.4.2 Sensitive Time Delay Model273

7.5 Nonlinear Theory for Combustion Stability in Liquid Rocket Engines283

7.5.1 Nonlinear Field Oscillator Model286

7.5.2 Continuous Stirred Tank Reactor Acoustic Model287

7.5.3 Spatio-Temporal Interaction Dynamic Model291

7.5.4 General Thermodynamic Analysis of Combustion Instability293

7.6 Control of Unstable Combustion295

7.6.1 Passive Control295

7.6.2 Active Control297

7.6.3 A Third Control Method298

References300

8 Numerical Method and Simulations of Liquid Rocket Engine Combustion Process302

8.1 Governing Equations of Two-Phase Multicomponent Reaction Flows302

8.1.1 Gas Phase Governing Equation303

8.1.2 Liquid Particle Trajectory Model305

8.1.3 Turbulence Model308

8.1.4 Droplets Atomizing Model309

8.1.5 Droplet Evaporation Model311

8.1.6 Chemical Reaction Kinetics Model313

8.2 Numerical Methodology314

8.2.1 Overview314

8.2.2 The Commonly-Used Discretization Scheme315

8.2.3 Discrete Equations320

8.2.4 Discretization of the Momentum Equation Based on the Staggered Grid323

8.2.5 The SIM PLE Algorithm of Flow Field Computing326

8.2.6 PISO Algorithm329

8.3 Grid Generation Techniques334

8.3.1 Structured Grid Generation Technology334

8.3.2 Unstructured Mesh Generation Techniques338

8.4 Simulations of Combustion in Liquid Rocket Engines and Results Analysis340

8.4.1 Numerical Analysis of Dual-States Hydrogen Engine Combustion and Heat Transfer Processes340

8.4.2 Numerical Heat Transfer Simulation of a Three-Component Thrust Chamber349

8.4.3 Numerical Simulation of Liquid Rocket Engine Combustion Stability356

References376

Index377

热门推荐