图书介绍

固体物理学 英文影印版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

固体物理学 英文影印版
  • (希)艾克拿默(Eleftherios N.Economou)著 著
  • 出版社: 世界图书出版公司北京公司
  • ISBN:7510077876
  • 出版时间:2014
  • 标注页数:865页
  • 文件大小:102MB
  • 文件页数:886页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

固体物理学 英文影印版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part Ⅰ An Overview3

1 Basic Principles Summarized3

1.1 The Atomic Idea:From Elementary Particles to Solids4

1.2 Permanent(i.e.,Equilibrium)Structures of Matter Correspond to the Minimum of Their(Free)Energy6

1.3 Condensed Matter Tends to Collapse Under the Influence of Coulomb Potential Energy9

1.4 Quantum Kinetic Energy Counterbalances Coulomb Potential Energy Leading to Stable Equilibrium Structures10

1.4.1 Heisenberg's Uncertainty Principle and the Minimum Kinetic Energy10

1.4.2 Pauli's Exclusion Principle and the Enhancement of the Minimum Kinetic Energy11

1.4.3 Schr?dinger's Spectral Discreteness and the Rigidity of the Ground State14

1.5 Dimensional Analysis15

1.6 Key Points18

1.7 Questions and Problems19

2 Basic Principles in Action21

2.1 Size and Energy Scale of Atoms21

2.2 Why do Atoms Come Together to Form Molecules and Solids?23

2.3 Ionic Motion:Small Oscillations27

2.4 Why do the Specific Heats of Solids go to Zero as T→0K?29

2.5 When is Classical Mechanics Adequate?31

2.6 Estimating Magnitudes Through Dimensional Analysis32

2.6.1 Atomic Radius,Rα32

2.6.2 Volume per Atom,νa≡V/Na,in Solids32

2.6.3 Mass Density,ρM33

2.6.4 Cohesive Energy,Uc33

2.6.5 Bulk Modulus,B,and Shear Modulus,μs34

2.6.6 Sound Velocities in Solids,c0,cl,ct35

2.6.7 Maximum Angular Frequency of Atomic Vibrations in Solids,ωmax37

2.6.8 Melting Temperature,Tm37

2.6.9 DC Electrical Resistivity,ρe38

2.7 Key Points41

2.8 Questions and Problems42

3 A First Acquaintance with Condensed Matter47

3.1 Various Kinds of Condensed Matter47

3.1.1 Monocrystalline and Polycrystalline Atomic Solids48

3.1.2 Atomic or Ionic Compounds and Alloys49

3.1.3 Molecular Solids49

3.1.4 Glasses49

3.1.5 Polymers50

3.1.6 Colloids50

3.1.7 Gels51

3.1.8 Liquid Crystals51

3.1.9 Self-Assembled Soft Matter51

3.1.1 0Artificial Structures52

3.1.1 1Clusters and Other Finite Systems52

3.2 Bonding Types and Resulting Properties53

3.2.1 Simple Metals54

3.2.2 Transition Metals and Rare Earths55

3.2.3 Covalent Solids55

3.2.4 Ionic Solids56

3.2.5 Van der Waals Bonded Solids57

3.2.6 Hydrogen Bonded Solids58

3.3 A Short Introduction to Crystal Structures59

3.3.1 Some Basic Definitions59

3.3.2 Unit and Primitive Cells of Some Commonly Occurring 3-D Crystal Structures64

3.3.3 Systems and Types of 3D Bravais Lattices67

3.3.4 Crystal Planes and Miller Indices67

3.4 Bloch Theorem,Reciprocal Lattice,Bragg Planes,and Brillouin Zones70

3.4.1 Bloch Theorem70

3.4.2 Reciprocal Lattice72

3.4.3 Bragg Planes75

3.4.4 Brillouin Zones75

3.5 Key Points77

3.6 Questions and Problems78

Part Ⅱ Two Simple Models for Solids83

4 The Jellium Model and Metals Ⅰ:Equilibrium Properties83

4.1 Introduction84

4.2 Electronic Eigenfunctions,Eigenenergies,Number of States86

4.3 Kinetic and Potential Energy,Pressures,and Elastic Moduli90

4.4 Acoustic Waves are the Ionic Eigenoscillations in the JM97

4.5 Thermodynamic Quantities101

4.5.1 General Formulas101

4.5.2 Specific Heat,CV104

4.5.3 Bulk Thermal Expansion Coefficient107

4.6 Key Points107

4.7 Problems108

5 The Jellium Model and Metals Ⅱ:Response to External Perturbations113

5.1 Response to Electric Field113

5.2 The Dielectric Function114

5.3 Static Electrical Conductivity120

5.4 Phonon Contribution to Resistivity123

5.5 Response in the Presence of a Static Uniform Magnetic Field127

5.5.1 Magnetic Resonances128

5.5.2 Hall Effect and Magnetoresistance131

5.5.3 Magnetic Susceptibility,χm133

5.6 Thermoelectric Response140

5.7 Key Points143

5.8 Problems145

6 Solids as Supergiant Molecules:LCAO149

6.1 Diversion:The Coupled Pendulums Model149

6.2 Introductory Remarks Regarding the LCAO Method152

6.3 A Single Band One-Dimensional Elemental“Metal”153

6.4 One-Dimensional Ionic“Solid”157

6.5 One-Dimensional Molecular“Solid”160

6.6 Diversion:Eigenoscillations in One-Dimensional“solid”with two Atoms Per Primitive Cell163

6.7 One-Dimensional Elemental sp1“Semiconductor”164

6.8 One-Dimensional Compound sp1“Semiconductor”171

6.9 Key Points174

6.1 0Problems174

7 Semiconductors and Other Tetravalent Solids177

7.1 Lattice Structures:A Reminder177

7.2 Band Edges and Gap178

7.3 Differences Between the l-D and the 3-D Case and Energy Diagrams181

7.4 Metals,Semiconductors,and Ionic Insulators183

7.5 Holes184

7.6 Effective Masses and DOS186

7.7 Dielectric Function and Optical Absorption188

7.8 Effective Hamiltonian189

7.9 Impurity Levels191

7.9.1 Impurity Levels:The General Picture191

7.9.2 Impurity Levels:Doping192

7.10 Concentration of Electrons and Holes at Temperature T195

7.10.1 Intrinsic case197

7.10.2 Extrinsic case197

7.11 Band Structure and Electronic DOS198

7.12 Eigenfrequencies,Phononic DOS,and Dielectric Function200

7.13 Key Points207

7.14 Problems208

8 Beyond the Jellium and the LCAO:An Outline211

8.1 Introductory Remarks211

8.2 The Four Basic Approximations212

8.3 Density Functional Theory215

8.4 Outline of an Advanced Scheme for Calculating the Properties of Solids219

8.5 Beyond the Four Basic Approximations221

8.5.1 Periodicity Broken or Absent223

8.5.2 Electron-Electron Correlations,Quasi-Particles,Magnetic Phases,and Superconductivity235

8.5.3 Electron-Phonon Interactions,Transport Properties,Superconductivity,and Polarons237

8.5.4 Phonon-Phonon Interactions,Thermal Expansion,Melting,Structural Phase Transitions,Solitons,Breathers238

8.5.5 Disorder and Many Body Effects in Coexistence239

8.5.6 Quantum Informatics and Solid State Systems240

8.6 Key Points240

8.7 Problems241

Part Ⅲ More About Periodicity&its Consequences245

9 Crystal Structure and Ionic Vibrations245

9.1 Experimental Determination of Crystal Structures245

9.2 Determination of the Frequency vs.Wavevector251

9.3 Theoretical Calculation of the Phonon Dispersion Relation256

9.4 The Debye-Waller Factor and the Inelastic Cross-Section263

9.5 Key Points268

9.6 Problems269

10 Electrons in Periodic Media.The Role of Magnetic Field273

10.1 Introduction273

10.2 Dispersion Relations,Surfaces of Constant Energy,and DOS:A Reminder274

10.3 Effective Hamiltonian and Semiclassical Approximation276

10.4 Semiclassical Trajectories in the Presence of a Magnetic Field280

10.5 Two Simple but Elucidating TB Models281

10.6 Cyclotron Resonance and the de Haas-van Alphen Effect287

10.7 Hall Effect and Magnetoresistance290

10.8 Key Points298

10.9 Problems299

11 Methods for Calculating the Band Structure301

11.1 Introductory Remarks301

11.2 Ionic and Total Pseudopotentials303

11.3 Schr?dinger Equation,Plane Wave Expansion,and Bloch's Theorem309

11.4 Plane Waves and Perturbation Theory310

11.5 Muffin-Tin Potential313

11.6 Schr?dinger Equation and the Augmented Plane Wave(APW)Method313

11.7 Schr?dinger Equation and the Korringa-Kohn-Rostoker(KKR) Method315

11.8 The κ·p Method of Band Structure Calculations317

11.9 Key Points321

11.1 0Problems322

12 Pseudopotentials in Action325

12.1 The One-Dimensional Case325

12.2 The Two-Dimensional Square Lattice327

12.2.1 Spaghetti Diagrams327

12.2.2 Fermi Lines330

12.3 Harrison's Construction336

12.4 Second-Order Correction to the Total JM Energy337

12.5 Ionic Interactions in Real Space338

12.6 Phononic Dispersions in Metals340

12.7 Scattering by Phonons,Mean Free Path,and the Dimensionless Constant λ in Metals342

12.8 Key Points345

12.9 Problems346

Part Ⅳ Materials351

13 Simple Metals and Semiconductors Revisited351

13.1 Band Structure and Fermi Surfaces of Simple Metals351

13.1.1 Alkali Metals351

13.1.2 Alkaline Earths:Be,Mg,Ca,Sr,Ba,and Ra354

13.1.3 Trivalent Metals354

13.1.4 Tetravalent Metals358

13.2 Band Structure of Semiconductors360

13.3 The Jones Zone and the Disappearance of the Fermi Surface363

13.4 Mechanical Properties of Semiconductors365

13.5 Magnetic Susceptibility of Semiconductors368

13.6 Optical and Transport Properties of Semiconductors371

13.6.1 Excitons371

13.6.2 Conductivity and Mobility in Semiconductors374

13.7 Silicon Dioxide(SiO2)378

13.8 Graphite and Graphene380

13.9 Organic semiconductors386

13.10 Key Points388

13.11 Questions and Problems389

14 Closed-Shell Solids393

14.1 Van Der Waals Solids393

14.2 Ionic Compounds Ⅰ:Types and Crystal Structures397

14.3 Ionic Compounds Ⅱ:Mechanical Properties399

14.4 Ionic Compounds Ⅲ:Optical Properties401

14.5 Key Points406

14.6 Problems407

15 Transition Metals and Compounds409

15.1 Experimental Data for the Transition Metals409

15.2 Calculations Ⅰ:APW or KKR412

15.3 Calculations Ⅱ:LCAO417

15.4 Calculations Ⅲ:The Simple Friedel Model421

15.5 Compounds of Transition Elements,Ⅰ:Perovskites423

15.6 Compounds of Transition Elements,Ⅱ:High Tc Superconducting Materials426

15.7 Compounds of Transition Metals,Ⅲ:Oxides,etc430

15.8 Key Points434

15.9 Problems435

16 Artificial Periodic Structures437

16.1 Semiconductor Superlattices437

16.2 Photonic Crystals:An Overview439

16.3 Photonic Crystals:Theoretical Considerations443

16.4 Phononic Crystals450

16.5 Left-Handed Metamaterials(LHMs)456

16.6 Designing,Fabricating,and Measuring LHMs461

16.7 Key Points466

16.8 Problems468

Part Ⅴ Deviations from Periodicity471

17 Surfaces and Interfaces471

17.1 Surface Preparation471

17.2 Relaxation and Reconstruction472

17.3 Surface States474

17.4 Work Function479

17.5 Measuring the Work Function481

17.6 The p-n Homojunction in Equilibrium483

17.7 The p-n Homojunction Under an External Voltage V487

17.8 Some Applications of Interfaces491

17.9 Key Points494

17.10 Problems497

18 Disordered and Other Nonperiodic Solids499

18.1 Introductory Remarks499

18.2 Alloys and the Hume-Rothery Rule500

18.3 Glasses and other Amorphous Systems502

18.4 Distribution and Correlation Functions504

18.5 Quasi-Crystals506

18.6 Electron Transport and Quantum Interference510

18.7 Band Structure,Static Disorder,and Localization513

18.7.1 3D Case513

18.7.2 2D Case517

18.7.3 1D and quasi 1D Systems518

18.8 Calculation Techniques522

18.8.1 Coherent Potential Approximation522

18.8.2 Weak Localization due to Quantum Interference526

18.8.3 Scaling Approach529

18.8.4 Quasi-One-Dimensional Systems and Scaling532

18.8.5 Potential Well Analogy533

18.9 Quantum Hall Effect534

18.10 Key Points538

18.11 Problems540

19 Finite Systems543

19.1 Introduction543

19.2 Metallic Clusters544

19.3 Fullerenes545

19.4 C60-Based Solids549

19.5 Carbon Nanotubes551

19.6 Other Clusters556

19.7 Quantum Dots557

19.7.1 An Overview557

19.7.2 Optical Transitions558

19.7.3 QDs and Coulomb Blockade561

19.8 Key Points564

19.9 Problems565

Part Ⅵ Correlated Systems569

20 Magnetic Materials,Ⅰ:Phenomenology569

20.1 Which Property Characterizes These Materials?569

20.2 Experimental Data for Ferromagnets573

20.2.1 Saturation Magnetization vs Temperature for Simple Ferromagnets573

20.2.2 Magnetic Susceptibility of Simple Ferromagnet for T>Tc573

20.2.3 Saturation Magnetization vs Temperature for Ferrimagnets574

20.2.4 Magnetic Susceptibility of Ferrimagnets vs Temperature(T>Tc)575

20.3 Experimental Data for Antiferromagnets576

20.3.1 Determination of the Antiferromagnetic Ordered Structure576

20.3.2 Magnetic Susceptibility vs Temperature577

20.4 Materials577

20.4.1 Simple Ferromagnetic Materials577

20.4.2 Ferrimagnetic Materials579

20.4.3 Antiferromagnetic Materials580

20.5 Thermodynamic Relations580

20.5.1 Thermodynamic Potentials580

20.5.2 Mean Field Approximation(Landau's Approach)583

20.5.3 Why are Magnetic Domains Formed?584

20.5.4 How Thick is the Bloch Wall?586

20.5.5 Examples of Magnetic Domains586

20.5.6 Thermodynamics of Antiferromagnets587

20.6 Spintronics588

20.7 Key Points592

20.8 Problems593

21 Magnetic Materials Ⅱ:Microscopic View595

21.1 Introduction595

21.2 Jellium model and el-el Coulomb Repulsion599

21.2.1 Is There Ferromagnetic Order in the JM?599

21.2.2 Magnetic Susceptibility Within the JM in the Presence of Electron-Electron Interactions601

21.2.3 Is There Antiferromagnetic Order in the JM?603

21.3 The Hubbard Model607

21.4 The Heisenberg Model613

21.4.1 The Hamiltonian613

21.4.2 Mean Field Approximation615

21.4.3 The Ferromagnetic Case,(Jij>0)and its spin waves617

21.4.4 The AF Case619

21.5 Key Points622

21.6 Problems624

22 Superconductivity,Ⅰ:Phenomenology625

22.1 Materials625

22.2 Properties of Superconductors627

22.2.1 Zero DC Resistivity627

22.2.2 Expulsion of the Magnetic Field B from the Interior of a Superconductor627

22.2.3 Critical Value of the Magnetic Field Beyond Which Superconductivity Disappears629

22.2.4 Specific Heat and Other Thermodynamic Quantities632

22.2.5 Response to Microwave or Far Infrared EM Radiation634

22.2.6 Ultrasound Attenuation635

22.2.7 Tunneling Current in Metal/Insulator/Superconductor Junctions635

22.2.8 Temperature Dependence of the Superconducting Gap635

22.2.9 Isotope Effect637

22.2.10 Relaxation Times for Nuclear Spin638

22.2.11 Thermoelectric Coefficients638

22.3 Thermodynamic Relations639

22.4 London Equation641

22.5 Pippard's Generalization644

22.6 Ginzburg-Landau Theory645

22.7 Quantization of the Magnetic Flux651

22.8 Key Points652

22.9 Problems654

23 Superconductivity,Ⅱ:Microscopic Theory655

23.1 Electron-Electron Indirect Attraction655

23.2 Cooper Pairs657

23.3 Comments659

23.4 Corrected Binding Energy and the Critical Temperature661

23.5 Further Corrections to the Formula for Tc663

23.6 The Bardeen-Cooper-Schrieffer(BCS)Theory664

23.7 Thermodynamic Quantities669

23.8 Response to Electromagnetic Fields672

23.9 Towards Material-Specific Calculations of Superconducting Quantities674

23.10 Josephson Effects and SQUID677

23.11 Key Points680

23.12 Problems682

Part Ⅶ Appendices685

A Elements of Electrodynamics of Continuous Media685

A.1 Field Vectors,Potentials,and Maxwell's Equations685

A.2 Relations Among the Fields688

B Elements of Quantum Mechanics697

B.1 General Formalism697

B.2 Bra and Ket Notation700

B.3 Spherically Symmetric Potentials702

B.4 Perturbation Results708

B.5 Interaction of Matter with an External Electromagnetic Field711

C Elements of Thermodynamics and Statistical Mechanics713

C.1 Thermodynamic Relations713

C.2 Basic Relations of Statistical Mechanics716

C.3 Non-Interacting Particles718

C.3.1 Non-Interacting Electrons718

C.3.2 Phonons721

D Dielectric Function,ε(κ,ω):Formulas and Uses723

D.1 Uses724

D.2 Expressions for ε(κ,ω)within the JM728

D.3 Phenomenological Expressions for the Dielectric Function730

E Waves in Continuous Elastic Media733

E.1 Strains733

E.2 Equations of Motion733

E.3 Connecting Stress and Strain734

E.4 The Elastic Wave Equation735

F The Method LCAO Applied to Molecules737

F.1 Formulation of the LCAO Method737

F.2 Some Important Examples740

F.2.1 Covalent Diatomic Molecule740

F.2.2 Ionic Diatomic Molecule742

F.3 Hybridization of Atomic Orbitals743

F.3.1 sp1 Hybrid Atomic Orbitals744

F.3.2 sp2 Hybrid Atomic Orbitals748

F.3.3 sp3 Hybrid Atomic Orbitals749

G Boltzmann's Equation755

H Tables759

Solutions of Selected Problems and Answers779

General Reading826

References837

Index849

热门推荐