图书介绍
固体物理学 英文影印版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (希)艾克拿默(Eleftherios N.Economou)著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7510077876
- 出版时间:2014
- 标注页数:865页
- 文件大小:102MB
- 文件页数:886页
- 主题词:
PDF下载
下载说明
固体物理学 英文影印版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ An Overview3
1 Basic Principles Summarized3
1.1 The Atomic Idea:From Elementary Particles to Solids4
1.2 Permanent(i.e.,Equilibrium)Structures of Matter Correspond to the Minimum of Their(Free)Energy6
1.3 Condensed Matter Tends to Collapse Under the Influence of Coulomb Potential Energy9
1.4 Quantum Kinetic Energy Counterbalances Coulomb Potential Energy Leading to Stable Equilibrium Structures10
1.4.1 Heisenberg's Uncertainty Principle and the Minimum Kinetic Energy10
1.4.2 Pauli's Exclusion Principle and the Enhancement of the Minimum Kinetic Energy11
1.4.3 Schr?dinger's Spectral Discreteness and the Rigidity of the Ground State14
1.5 Dimensional Analysis15
1.6 Key Points18
1.7 Questions and Problems19
2 Basic Principles in Action21
2.1 Size and Energy Scale of Atoms21
2.2 Why do Atoms Come Together to Form Molecules and Solids?23
2.3 Ionic Motion:Small Oscillations27
2.4 Why do the Specific Heats of Solids go to Zero as T→0K?29
2.5 When is Classical Mechanics Adequate?31
2.6 Estimating Magnitudes Through Dimensional Analysis32
2.6.1 Atomic Radius,Rα32
2.6.2 Volume per Atom,νa≡V/Na,in Solids32
2.6.3 Mass Density,ρM33
2.6.4 Cohesive Energy,Uc33
2.6.5 Bulk Modulus,B,and Shear Modulus,μs34
2.6.6 Sound Velocities in Solids,c0,cl,ct35
2.6.7 Maximum Angular Frequency of Atomic Vibrations in Solids,ωmax37
2.6.8 Melting Temperature,Tm37
2.6.9 DC Electrical Resistivity,ρe38
2.7 Key Points41
2.8 Questions and Problems42
3 A First Acquaintance with Condensed Matter47
3.1 Various Kinds of Condensed Matter47
3.1.1 Monocrystalline and Polycrystalline Atomic Solids48
3.1.2 Atomic or Ionic Compounds and Alloys49
3.1.3 Molecular Solids49
3.1.4 Glasses49
3.1.5 Polymers50
3.1.6 Colloids50
3.1.7 Gels51
3.1.8 Liquid Crystals51
3.1.9 Self-Assembled Soft Matter51
3.1.1 0Artificial Structures52
3.1.1 1Clusters and Other Finite Systems52
3.2 Bonding Types and Resulting Properties53
3.2.1 Simple Metals54
3.2.2 Transition Metals and Rare Earths55
3.2.3 Covalent Solids55
3.2.4 Ionic Solids56
3.2.5 Van der Waals Bonded Solids57
3.2.6 Hydrogen Bonded Solids58
3.3 A Short Introduction to Crystal Structures59
3.3.1 Some Basic Definitions59
3.3.2 Unit and Primitive Cells of Some Commonly Occurring 3-D Crystal Structures64
3.3.3 Systems and Types of 3D Bravais Lattices67
3.3.4 Crystal Planes and Miller Indices67
3.4 Bloch Theorem,Reciprocal Lattice,Bragg Planes,and Brillouin Zones70
3.4.1 Bloch Theorem70
3.4.2 Reciprocal Lattice72
3.4.3 Bragg Planes75
3.4.4 Brillouin Zones75
3.5 Key Points77
3.6 Questions and Problems78
Part Ⅱ Two Simple Models for Solids83
4 The Jellium Model and Metals Ⅰ:Equilibrium Properties83
4.1 Introduction84
4.2 Electronic Eigenfunctions,Eigenenergies,Number of States86
4.3 Kinetic and Potential Energy,Pressures,and Elastic Moduli90
4.4 Acoustic Waves are the Ionic Eigenoscillations in the JM97
4.5 Thermodynamic Quantities101
4.5.1 General Formulas101
4.5.2 Specific Heat,CV104
4.5.3 Bulk Thermal Expansion Coefficient107
4.6 Key Points107
4.7 Problems108
5 The Jellium Model and Metals Ⅱ:Response to External Perturbations113
5.1 Response to Electric Field113
5.2 The Dielectric Function114
5.3 Static Electrical Conductivity120
5.4 Phonon Contribution to Resistivity123
5.5 Response in the Presence of a Static Uniform Magnetic Field127
5.5.1 Magnetic Resonances128
5.5.2 Hall Effect and Magnetoresistance131
5.5.3 Magnetic Susceptibility,χm133
5.6 Thermoelectric Response140
5.7 Key Points143
5.8 Problems145
6 Solids as Supergiant Molecules:LCAO149
6.1 Diversion:The Coupled Pendulums Model149
6.2 Introductory Remarks Regarding the LCAO Method152
6.3 A Single Band One-Dimensional Elemental“Metal”153
6.4 One-Dimensional Ionic“Solid”157
6.5 One-Dimensional Molecular“Solid”160
6.6 Diversion:Eigenoscillations in One-Dimensional“solid”with two Atoms Per Primitive Cell163
6.7 One-Dimensional Elemental sp1“Semiconductor”164
6.8 One-Dimensional Compound sp1“Semiconductor”171
6.9 Key Points174
6.1 0Problems174
7 Semiconductors and Other Tetravalent Solids177
7.1 Lattice Structures:A Reminder177
7.2 Band Edges and Gap178
7.3 Differences Between the l-D and the 3-D Case and Energy Diagrams181
7.4 Metals,Semiconductors,and Ionic Insulators183
7.5 Holes184
7.6 Effective Masses and DOS186
7.7 Dielectric Function and Optical Absorption188
7.8 Effective Hamiltonian189
7.9 Impurity Levels191
7.9.1 Impurity Levels:The General Picture191
7.9.2 Impurity Levels:Doping192
7.10 Concentration of Electrons and Holes at Temperature T195
7.10.1 Intrinsic case197
7.10.2 Extrinsic case197
7.11 Band Structure and Electronic DOS198
7.12 Eigenfrequencies,Phononic DOS,and Dielectric Function200
7.13 Key Points207
7.14 Problems208
8 Beyond the Jellium and the LCAO:An Outline211
8.1 Introductory Remarks211
8.2 The Four Basic Approximations212
8.3 Density Functional Theory215
8.4 Outline of an Advanced Scheme for Calculating the Properties of Solids219
8.5 Beyond the Four Basic Approximations221
8.5.1 Periodicity Broken or Absent223
8.5.2 Electron-Electron Correlations,Quasi-Particles,Magnetic Phases,and Superconductivity235
8.5.3 Electron-Phonon Interactions,Transport Properties,Superconductivity,and Polarons237
8.5.4 Phonon-Phonon Interactions,Thermal Expansion,Melting,Structural Phase Transitions,Solitons,Breathers238
8.5.5 Disorder and Many Body Effects in Coexistence239
8.5.6 Quantum Informatics and Solid State Systems240
8.6 Key Points240
8.7 Problems241
Part Ⅲ More About Periodicity&its Consequences245
9 Crystal Structure and Ionic Vibrations245
9.1 Experimental Determination of Crystal Structures245
9.2 Determination of the Frequency vs.Wavevector251
9.3 Theoretical Calculation of the Phonon Dispersion Relation256
9.4 The Debye-Waller Factor and the Inelastic Cross-Section263
9.5 Key Points268
9.6 Problems269
10 Electrons in Periodic Media.The Role of Magnetic Field273
10.1 Introduction273
10.2 Dispersion Relations,Surfaces of Constant Energy,and DOS:A Reminder274
10.3 Effective Hamiltonian and Semiclassical Approximation276
10.4 Semiclassical Trajectories in the Presence of a Magnetic Field280
10.5 Two Simple but Elucidating TB Models281
10.6 Cyclotron Resonance and the de Haas-van Alphen Effect287
10.7 Hall Effect and Magnetoresistance290
10.8 Key Points298
10.9 Problems299
11 Methods for Calculating the Band Structure301
11.1 Introductory Remarks301
11.2 Ionic and Total Pseudopotentials303
11.3 Schr?dinger Equation,Plane Wave Expansion,and Bloch's Theorem309
11.4 Plane Waves and Perturbation Theory310
11.5 Muffin-Tin Potential313
11.6 Schr?dinger Equation and the Augmented Plane Wave(APW)Method313
11.7 Schr?dinger Equation and the Korringa-Kohn-Rostoker(KKR) Method315
11.8 The κ·p Method of Band Structure Calculations317
11.9 Key Points321
11.1 0Problems322
12 Pseudopotentials in Action325
12.1 The One-Dimensional Case325
12.2 The Two-Dimensional Square Lattice327
12.2.1 Spaghetti Diagrams327
12.2.2 Fermi Lines330
12.3 Harrison's Construction336
12.4 Second-Order Correction to the Total JM Energy337
12.5 Ionic Interactions in Real Space338
12.6 Phononic Dispersions in Metals340
12.7 Scattering by Phonons,Mean Free Path,and the Dimensionless Constant λ in Metals342
12.8 Key Points345
12.9 Problems346
Part Ⅳ Materials351
13 Simple Metals and Semiconductors Revisited351
13.1 Band Structure and Fermi Surfaces of Simple Metals351
13.1.1 Alkali Metals351
13.1.2 Alkaline Earths:Be,Mg,Ca,Sr,Ba,and Ra354
13.1.3 Trivalent Metals354
13.1.4 Tetravalent Metals358
13.2 Band Structure of Semiconductors360
13.3 The Jones Zone and the Disappearance of the Fermi Surface363
13.4 Mechanical Properties of Semiconductors365
13.5 Magnetic Susceptibility of Semiconductors368
13.6 Optical and Transport Properties of Semiconductors371
13.6.1 Excitons371
13.6.2 Conductivity and Mobility in Semiconductors374
13.7 Silicon Dioxide(SiO2)378
13.8 Graphite and Graphene380
13.9 Organic semiconductors386
13.10 Key Points388
13.11 Questions and Problems389
14 Closed-Shell Solids393
14.1 Van Der Waals Solids393
14.2 Ionic Compounds Ⅰ:Types and Crystal Structures397
14.3 Ionic Compounds Ⅱ:Mechanical Properties399
14.4 Ionic Compounds Ⅲ:Optical Properties401
14.5 Key Points406
14.6 Problems407
15 Transition Metals and Compounds409
15.1 Experimental Data for the Transition Metals409
15.2 Calculations Ⅰ:APW or KKR412
15.3 Calculations Ⅱ:LCAO417
15.4 Calculations Ⅲ:The Simple Friedel Model421
15.5 Compounds of Transition Elements,Ⅰ:Perovskites423
15.6 Compounds of Transition Elements,Ⅱ:High Tc Superconducting Materials426
15.7 Compounds of Transition Metals,Ⅲ:Oxides,etc430
15.8 Key Points434
15.9 Problems435
16 Artificial Periodic Structures437
16.1 Semiconductor Superlattices437
16.2 Photonic Crystals:An Overview439
16.3 Photonic Crystals:Theoretical Considerations443
16.4 Phononic Crystals450
16.5 Left-Handed Metamaterials(LHMs)456
16.6 Designing,Fabricating,and Measuring LHMs461
16.7 Key Points466
16.8 Problems468
Part Ⅴ Deviations from Periodicity471
17 Surfaces and Interfaces471
17.1 Surface Preparation471
17.2 Relaxation and Reconstruction472
17.3 Surface States474
17.4 Work Function479
17.5 Measuring the Work Function481
17.6 The p-n Homojunction in Equilibrium483
17.7 The p-n Homojunction Under an External Voltage V487
17.8 Some Applications of Interfaces491
17.9 Key Points494
17.10 Problems497
18 Disordered and Other Nonperiodic Solids499
18.1 Introductory Remarks499
18.2 Alloys and the Hume-Rothery Rule500
18.3 Glasses and other Amorphous Systems502
18.4 Distribution and Correlation Functions504
18.5 Quasi-Crystals506
18.6 Electron Transport and Quantum Interference510
18.7 Band Structure,Static Disorder,and Localization513
18.7.1 3D Case513
18.7.2 2D Case517
18.7.3 1D and quasi 1D Systems518
18.8 Calculation Techniques522
18.8.1 Coherent Potential Approximation522
18.8.2 Weak Localization due to Quantum Interference526
18.8.3 Scaling Approach529
18.8.4 Quasi-One-Dimensional Systems and Scaling532
18.8.5 Potential Well Analogy533
18.9 Quantum Hall Effect534
18.10 Key Points538
18.11 Problems540
19 Finite Systems543
19.1 Introduction543
19.2 Metallic Clusters544
19.3 Fullerenes545
19.4 C60-Based Solids549
19.5 Carbon Nanotubes551
19.6 Other Clusters556
19.7 Quantum Dots557
19.7.1 An Overview557
19.7.2 Optical Transitions558
19.7.3 QDs and Coulomb Blockade561
19.8 Key Points564
19.9 Problems565
Part Ⅵ Correlated Systems569
20 Magnetic Materials,Ⅰ:Phenomenology569
20.1 Which Property Characterizes These Materials?569
20.2 Experimental Data for Ferromagnets573
20.2.1 Saturation Magnetization vs Temperature for Simple Ferromagnets573
20.2.2 Magnetic Susceptibility of Simple Ferromagnet for T>Tc573
20.2.3 Saturation Magnetization vs Temperature for Ferrimagnets574
20.2.4 Magnetic Susceptibility of Ferrimagnets vs Temperature(T>Tc)575
20.3 Experimental Data for Antiferromagnets576
20.3.1 Determination of the Antiferromagnetic Ordered Structure576
20.3.2 Magnetic Susceptibility vs Temperature577
20.4 Materials577
20.4.1 Simple Ferromagnetic Materials577
20.4.2 Ferrimagnetic Materials579
20.4.3 Antiferromagnetic Materials580
20.5 Thermodynamic Relations580
20.5.1 Thermodynamic Potentials580
20.5.2 Mean Field Approximation(Landau's Approach)583
20.5.3 Why are Magnetic Domains Formed?584
20.5.4 How Thick is the Bloch Wall?586
20.5.5 Examples of Magnetic Domains586
20.5.6 Thermodynamics of Antiferromagnets587
20.6 Spintronics588
20.7 Key Points592
20.8 Problems593
21 Magnetic Materials Ⅱ:Microscopic View595
21.1 Introduction595
21.2 Jellium model and el-el Coulomb Repulsion599
21.2.1 Is There Ferromagnetic Order in the JM?599
21.2.2 Magnetic Susceptibility Within the JM in the Presence of Electron-Electron Interactions601
21.2.3 Is There Antiferromagnetic Order in the JM?603
21.3 The Hubbard Model607
21.4 The Heisenberg Model613
21.4.1 The Hamiltonian613
21.4.2 Mean Field Approximation615
21.4.3 The Ferromagnetic Case,(Jij>0)and its spin waves617
21.4.4 The AF Case619
21.5 Key Points622
21.6 Problems624
22 Superconductivity,Ⅰ:Phenomenology625
22.1 Materials625
22.2 Properties of Superconductors627
22.2.1 Zero DC Resistivity627
22.2.2 Expulsion of the Magnetic Field B from the Interior of a Superconductor627
22.2.3 Critical Value of the Magnetic Field Beyond Which Superconductivity Disappears629
22.2.4 Specific Heat and Other Thermodynamic Quantities632
22.2.5 Response to Microwave or Far Infrared EM Radiation634
22.2.6 Ultrasound Attenuation635
22.2.7 Tunneling Current in Metal/Insulator/Superconductor Junctions635
22.2.8 Temperature Dependence of the Superconducting Gap635
22.2.9 Isotope Effect637
22.2.10 Relaxation Times for Nuclear Spin638
22.2.11 Thermoelectric Coefficients638
22.3 Thermodynamic Relations639
22.4 London Equation641
22.5 Pippard's Generalization644
22.6 Ginzburg-Landau Theory645
22.7 Quantization of the Magnetic Flux651
22.8 Key Points652
22.9 Problems654
23 Superconductivity,Ⅱ:Microscopic Theory655
23.1 Electron-Electron Indirect Attraction655
23.2 Cooper Pairs657
23.3 Comments659
23.4 Corrected Binding Energy and the Critical Temperature661
23.5 Further Corrections to the Formula for Tc663
23.6 The Bardeen-Cooper-Schrieffer(BCS)Theory664
23.7 Thermodynamic Quantities669
23.8 Response to Electromagnetic Fields672
23.9 Towards Material-Specific Calculations of Superconducting Quantities674
23.10 Josephson Effects and SQUID677
23.11 Key Points680
23.12 Problems682
Part Ⅶ Appendices685
A Elements of Electrodynamics of Continuous Media685
A.1 Field Vectors,Potentials,and Maxwell's Equations685
A.2 Relations Among the Fields688
B Elements of Quantum Mechanics697
B.1 General Formalism697
B.2 Bra and Ket Notation700
B.3 Spherically Symmetric Potentials702
B.4 Perturbation Results708
B.5 Interaction of Matter with an External Electromagnetic Field711
C Elements of Thermodynamics and Statistical Mechanics713
C.1 Thermodynamic Relations713
C.2 Basic Relations of Statistical Mechanics716
C.3 Non-Interacting Particles718
C.3.1 Non-Interacting Electrons718
C.3.2 Phonons721
D Dielectric Function,ε(κ,ω):Formulas and Uses723
D.1 Uses724
D.2 Expressions for ε(κ,ω)within the JM728
D.3 Phenomenological Expressions for the Dielectric Function730
E Waves in Continuous Elastic Media733
E.1 Strains733
E.2 Equations of Motion733
E.3 Connecting Stress and Strain734
E.4 The Elastic Wave Equation735
F The Method LCAO Applied to Molecules737
F.1 Formulation of the LCAO Method737
F.2 Some Important Examples740
F.2.1 Covalent Diatomic Molecule740
F.2.2 Ionic Diatomic Molecule742
F.3 Hybridization of Atomic Orbitals743
F.3.1 sp1 Hybrid Atomic Orbitals744
F.3.2 sp2 Hybrid Atomic Orbitals748
F.3.3 sp3 Hybrid Atomic Orbitals749
G Boltzmann's Equation755
H Tables759
Solutions of Selected Problems and Answers779
General Reading826
References837
Index849
热门推荐
- 490765.html
- 772331.html
- 3903215.html
- 806834.html
- 1073978.html
- 3228706.html
- 1979485.html
- 2109504.html
- 2464837.html
- 2418829.html
- http://www.ickdjs.cc/book_873310.html
- http://www.ickdjs.cc/book_3067223.html
- http://www.ickdjs.cc/book_2608007.html
- http://www.ickdjs.cc/book_243045.html
- http://www.ickdjs.cc/book_2942775.html
- http://www.ickdjs.cc/book_3777998.html
- http://www.ickdjs.cc/book_154815.html
- http://www.ickdjs.cc/book_2981989.html
- http://www.ickdjs.cc/book_3851683.html
- http://www.ickdjs.cc/book_2898114.html