图书介绍

离散数学 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

离散数学 英文版
  • RichardJohnsonbaugh著 著
  • 出版社: 北京:电子工业出版社
  • ISBN:9787121085345
  • 出版时间:2009
  • 标注页数:770页
  • 文件大小:149MB
  • 文件页数:788页
  • 主题词:离散数学-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

离散数学 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Sets and Logic1

1.1 Sets2

1.2 Propositions14

1.3 Conditional Propositions and Logical Equivalence21

1.4 Arguments and Rules of Inference31

1.5 Quantifiers36

1.6 Nested Quantifiers51

Problem-Solving Corner:Quantifiers60

Notes62

Chapter Review62

Chapter Self-Test63

Computer Exercises64

2 Proofs66

2.1 Mathematical Systems,Direct Proofs,and Counterexamples67

2.2 More Methods of Proof76

Problem-Solving Corner:Proving Some Properties of Real Numbers87

2.3 Resolution Proofs90

2.4 Mathematical Induction93

Problem-Solving Corner:Mathematical Induction106

2.5 Strong Form of Induction and the Well-Ordering Property108

Notes115

Chapter Review115

Chapter Self-Test116

Computer Exercises116

3 Functions,Sequences,and Relations117

3.1 Functions117

Problem-Solving Corner:Functions135

3.2 Sequences and Strings136

3.3 Relations148

3.4 Equivalence Relations159

Problem-Solving Corner:Equivalence Relations166

3.5 Matrices of Relations168

3.6 Relational Databases173

Notes178

Chapter Review178

Chapter Self-Test179

Computer Exercises180

4 Algorithms181

4.1 Introduction181

4.2 Examples of Algorithms186

4.3 Analysis of Algorithms193

Problem-Solving Corner:Design and Analysis of an Algorithm211

4.4 Recursive Algorithms213

Notes220

Chapter Review221

Chapter Self-Test221

Computer Exercises222

5 Introduction to Number Theory223

5.1 Divisors223

5.2 Representations of Integers and Integer Algorithms234

5.3 The Euclidean Algorithm248

Problem-Solving Corner:Making Postage259

5.4 The RSA Public-Key Cryptosystem260

Notes263

Chapter Review263

Chapter Self-Test263

Computer Exercises264

6 Counting Methods and the Pigeonhole Principle265

6.1 Basic Principles265

Problem-Solving Corner:Counting277

6.2 Permutations and Combinations278

Problem-Solving Corner:Combinations291

6.3 Generalized Permutations and Combinations293

6.4 Algorithms for Generating Permutations and Combinations299

6.5 Introduction to Discrete Probability305

6.6 Discrete Probability Theory309

6.7 Binomial Coefficients and Combinatorial Identities320

6.8 The Pigeonhole Principle325

Notes330

Chapter Review330

Chapter Self-Test330

Computer Exercises332

7 Recurrence Relations333

7.1 Introduction333

7.2 Solving Recurrence Relations345

Problem-Solving Corner:Recurrence Relations358

7.3 Applications to the Analysis of Algorithms361

Notes373

Chapter Review373

Chapter Self-Test374

Computer Exercises374

8 Graph Theory376

8.1 Introduction377

8.2 Paths and Cycles388

Problem-Solving Corner:Graphs399

8.3 Hamiltonian Cycles and the Traveling Salesperson Problem400

8.4 A Shortest-Path Algorithm407

8.5 Representations of Graphs412

8.6 Isomorphisms of Graphs417

8.7 Planar Graphs425

8.8 Instant Insanity431

Notes435

Chapter Review436

Chapter Self-Test437

Computer Exercises438

9 Trees440

9.1 Introduction440

9.2 Terminology and Characterizations of Trees448

Problem-Solving Corner:Trees453

9.3 Spanning Trees454

9.4 Minimal Spanning Trees461

9.5 Binary Trees467

9.6 Tree Traversals474

9.7 Decision Trees and the Minimum Time for Sorting480

9.8 Isomorphisms of Trees486

9.9 Game Trees496

Notes505

Chapter Review505

Chapter Self-Test506

Computer Exercises508

10 Network Models510

10.1 Introduction510

10.2 A Maximal Flow Algorithm516

10.3 The Max Flow,Min Cut Theorem524

10.4 Matching528

Problem-Solving Corner:Matching533

Notes534

Chapter Review535

Chapter Self-Test536

Computer Exercises536

11 Boolean Algebras and Combinatorial Circuits537

11.1 Combinatorial Circuits537

11.2 Properties of Combinatorial Circuits544

11.3 Boolean Algebras549

Problem-Solving Corner:Boolean Algebras554

11.4 Boolean Functions and Synthesis of Circuits556

11.5 Applications561

Notes570

Chapter Review570

Chapter Self-Test571

Computer Exercises572

12 Automata,Grammars,and Languages573

12.1 Sequential Circuits and Finite-State Machines573

12.2 Finite-State Automata579

12.3 Languages and Grammars585

12.4 Nondeterministic Finite-State Automata595

12.5 Relationships Between Languages and Automata602

Notes608

Chapter Review609

Chapter Self-Test609

Computer Exercises611

13 Computational Geometry612

13.1 The Closest-Pair Problem612

13.2 An Algorithm to Compute the Convex Hull617

Notes625

Chapter Review625

Chapter Self-Test625

Computer Exercises626

Appendix627

A Matrices627

B Algebra Review631

C Pseudocode644

References650

Hints and Solutions to Selected Exercises655

Index754

热门推荐