图书介绍
Computer Vision:Algorithms and Applications2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- Szeliski 著
- 出版社: Springer;Central Book Services [Distributor]
- ISBN:9781848829343;1848829345
- 出版时间:2010
- 标注页数:812页
- 文件大小:430MB
- 文件页数:831页
- 主题词:
PDF下载
下载说明
Computer Vision:Algorithms and ApplicationsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 What is computer vision?3
1.2 A brief history10
1.3 Book overview17
1.4 Sample syllabus23
1.5 A note on notation25
1.6 Additional reading25
2 Image formation27
2.1 Geometric primitives and transformations29
2.1.1 Geometric primitives29
2.1.2 2D transformations33
2.1.3 3D transformations36
2.1.4 3D rotations37
2.1.5 3D to 2D projections42
2.1.6 Lens distortions52
2.2 Photometric image formation54
2.2.1 Lighting54
2.2.2 Reflectance and shading55
2.2.3 Optics61
2.3 The digital camera65
2.3.1 Sampling and aliasing69
2.3.2 Color71
2.3.3 Compression80
2.4 Additional reading82
2.5 Exercises82
3 Image processing87
3.1 Point operators89
3.1.1 Pixel transforms91
3.1.2 Color transforms92
3.1.3 Compositing and matting92
3.1.4 Histogram equalization94
3.1.5 Application:Tonal adjustment97
3.2 Linear filtering98
3.2.1 Separable liltering102
3.2.2 Examples of linear filtering103
3.2.3 Band-pass and steerable filters104
3.3 More neighborhood operators108
3.3.1 Non-linear filtering108
3.3.2 Morphology112
3.3.3 Distance transforms113
3.3.4 Connected components115
3.4 Fourier transforms116
3.4.1 Fourier transform pairs119
3.4.2 Two-dimensional Fourier transforms123
3.4.3 Wiener filtering123
3.4.4 Application:Sharpening,blur,and noise removal126
3.5 Pyramids and wavelets127
3.5.1 Interpolation127
3.5.2 Decimation130
3.5.3 Multi-resolution representations132
3.5.4 Wavelets136
3.5.5 Application:Image blending140
3.6 Geometric transformations143
3.6.1 Parametric transformations145
3.6.2 Mesh-based warping149
3.6.3 Application:Feature-based morphing152
3.7 Global optimization153
3.7.1 Regularization154
3.7.2 Markov random fields158
3.7.3 Application:Image restoration169
3.8 Additional reading169
3.9 Exercises171
4 Feature detection and matching181
4.1 Points and patches183
4.1.1 Feature detectors185
4.1.2 Feature descriptors196
4.1.3 Feature matching200
4.1.4 Feature tracking207
4.1.5 Application:Performance-driven animation209
4.2 Edges210
4.2.1 Edge detection210
4.2.2 Edge linking215
4.2.3 Application:Edge editing and enhancement219
4.3 Lines220
4.3.1 Successive approximation220
4.3.2 Hough transforms221
4.3.3 Vanishing points224
4.3.4 Application:Rectangle detection226
4.4 Additional reading227
4.5 Exercises228
5 Segmentation235
5.1 Active contours237
5.1.1 Snakes238
5.1.2 Dynamic snakes and CONDENSATION243
5.1.3 Scissors246
5.1.4 Level Sets248
5.1.5 Application:Contour tracking and rotoscoping249
5.2 Split and merge250
5.2.1 Watershed251
5.2.2 Region splitting (divisive clustering)251
5.2.3 Region merging (agglomerative clustering)251
5.2.4 Graph-based segmentation252
5.2.5 Probabilistic aggregation253
5.3 Mean shift and mode finding254
5.3.1 K-means and mixtures of Gaussians256
5.3.2 Mean shift257
5.4 Normalized cuts260
5.5 Graph cuts and energy-based methods264
5.5.1 Application:Medical image segmentation268
5.6 Additional reading268
5.7 Exercises270
6 Feature-based alignment273
6.1 2D and 3D feature-based alignment275
6.1.1 2D alignment using least squares275
6.1.2 Application:Panography277
6.1.3 Iterative algorithms278
6.1.4 Robust least squares and RANSAC281
6.1.5 3D alignment283
6.2 Pose estimation284
6.2.1 Linear algorithms284
6.2.2 Iterative algorithms286
6.2.3 Application:Augmented reality287
6.3 Geometric intrinsic calibration288
6.3.1 Calibration patterns289
6.3.2 Vanishing points290
6.3.3 Application:Single view metrology292
6.3.4 Rotational motion293
6.3.5 Radial distortion295
6.4 Additional reading296
6.5 Exercises296
7 Structure from motion303
7.1 Triangulation305
7.2 Two-frame structure from motion307
7.2.1 Projective (uncalibrated) reconstruction312
7.2.2 Self-calibration313
7.2.3 Application:View morphing315
7.3 Factorization315
7.3.1 Perspective and projective factorization318
7.3.2 Application:Sparse 3D model extraction319
7.4 Bundle adjustment320
7.4.1 Exploiting sparsity322
7.4.2 Application:Match move and augmented reality324
7.4.3 Uncertainty and ambiguities326
7.4.4 Application:Reconstruction from Internet photos327
7.5 Constrained structure and motion329
7.5.1 Line-based techniques330
7.5.2 Plane-based techniques331
7.6 Additional reading332
7.7 Exercises332
8 Dense motion estimation335
8.1 Translational alignment337
8.1.1 Hierarchical motion estimation341
8.1.2 Fourier-based alignment341
8.1.3 Incremental refinement345
8.2 Parametric motion350
8.2.1 Application:Video stabilization354
8.2.2 Learned motion models354
8.3 Spline-based motion355
8.3.1 Application:Medical image registration358
8.4 Optical flow360
8.4.1 Multi-frame motion estimation363
8.4.2 Application:Video denoising364
8.4.3 Application:De-interlacing364
8.5 Layered motion365
8.5.1 Application:Frame interpolation368
8.5.2 Transparent layers and reflections368
8.6 Additional reading370
8.7 Exercises371
9 Image stitching375
9.1 Motion models378
9.1.1 Planar perspective motion379
9.1.2 Application:Whiteboard and document scanning379
9.1.3 Rotational panoramas380
9.1.4 Gap closing382
9.1.5 Application:Video summarization and compression383
9.1.6 Cylindrical and spherical coordinates385
9.2 Global alignment387
9.2.1 Bundle adjustment388
9.2.2 Parallax removal391
9.2.3 Recognizing panoramas392
9.2.4 Direct vs.feature-based alignment393
9.3 Compositing396
9.3.1 Choosing a compositing surface396
9.3.2 Pixel selection and weighting (de-ghosting)398
9.3.3 Application:Photomontage403
9.3.4 Blending403
9.4 Additional reading406
9.5 Exercises407
10 Computational photography409
10.1 Photometric calibration412
10.1.1 Radiometric response function412
10.1.2 Noise level estimation415
10.1.3 Vignetting416
10.1.4 Optical blur (spatial response) estimation416
10.2 High dynamic range imaging419
10.2.1 Tone mapping427
10.2.2 Application:Flash photography434
10.3 Super-resolution and blur removal436
10.3.1 Color image demosaicing440
10.3.2 Application:Colorization442
10.4 Image matting and compositing443
10.4.1 Blue screen matting445
10.4.2 Natural image matting446
10.4.3 Optimization-based matting450
10.4.4 Smoke,shadow,and flash matting452
10.4.5 Video matting454
10.5 Texture analysis and synthesis455
10.5.1 Application:Hole filling and inpainting457
10.5.2 Application:Non-photorealistic rendering458
10.6 Additional reading460
10.7 Exercises461
11 Stereo correspondence467
11.1 Epipolar geometry471
11.1.1 Rectification472
11.1.2 Plane sweep474
11.2 Sparse correspondence475
11.2.1 3D curves and profiles476
11.3 Dense correspondence477
11.3.1 Similarity measures479
11.4 Local methods480
11.4.1 Sub-pixel estimation and uncertainty482
11.4.2 Application:Stereo-based head tracking483
11.5 Global optimization484
11.5.1 Dynamic programming485
11.5.2 Segmentation-based techniques487
11.5.3 Application:Z-keying and background replacement489
11.6 Multi-view stereo489
11.6.1 Volumetric and 3D surface reconstruction492
11.6.2 Shape from silhouettes497
11.7 Additional reading499
11.8 Exercises500
12 3D reconstruction505
12.1 Shape from X508
12.1.1 Shape from shading and photometric stereo508
12.1.2 Shape from texture510
12.1.3 Shape from focus511
12.2 Active rangefinding512
12.2.1 Range data merging515
12.2.2 Application:Digital heritage517
12.3 Surface representations518
12.3.1 Surface interpolation518
12.3.2 Surface simplification520
12.3.3 Geometry images520
12.4 Point-based representations521
12.5 Volumetric representations522
12.5.1 Implicit surfaces and level sets522
12.6 Model-based reconstruction523
12.6.1 Architecture524
12.6.2 Heads and faces526
12.6.3 Application:Facial animation528
12.6.4 Whole body modeling and tracking530
12.7 Recovering texture maps and albedos534
12.7.1 Estimating BRDFs536
12.7.2 Application:3D photography537
12.8 Additional reading538
12.9 Exercises539
13 Image-based rendering543
13.1 View interpolation545
13.1.1 View-dependent texture maps547
13.1.2 Application:Photo Tourism548
13.2 Layered depth images549
13.2.1 Impostors,sprites,and layers549
13.3 Light fields and Lumigraphs551
13.3.1 Unstructured Lumigraph554
13.3.2 Surface light fields555
13.3.3 Application:Concentric mosaics556
13.4 Environment mattes556
13.4.1 Higher-dimensional light fields558
13.4.2 The modeling to rendering continuum559
13.5 Video-based rendering560
13.5.1 Video-based animation560
13.5.2 Video textures561
13.5.3 Application:Animating pictures564
13.5.4 3D Video564
13.5.5 Application:Video-based walkthroughs566
13.6 Additional reading569
13.7 Exercises570
14 Recognition575
14.1 Object detection578
14.1.1 Face detection578
14.1.2 Pedestrian detection585
14.2 Face recognition588
14.2.1 Eigenfaces589
14.2.2 Active appearance and 3D shape models596
14.2.3 Application:Personal photo collections601
14.3 Instance recognition602
14.3.1 Geometric alignment603
14.3.2 Large databases604
14.3.3 Application:Location recognition609
14.4 Category recognition611
14.4.1 Bag of words612
14.4.2 Part-based models615
14.4.3 Recognition with segmentation620
14.4.4 Application:Intelligent photo editing621
14.5 Context and scene understanding625
14.5.1 Learning and large image collections627
14.5.2 Application:Image search630
14.6 Recognition databases and test sets631
14.7 Additional reading631
14.8 Exercises637
15 Conclusion641
A Linear algebra and numerical techniques645
A.1 Matrix decompositions646
A.1.1 Singular value decomposition646
A.1.2 Eigenvalue decomposition647
A.1.3 QR factorization649
A.1.4 Cholesky factorization650
A.2 Linear least squares651
A.2.1 Total least squares653
A.3 Non-linear least squares654
A.4 Direct sparse matrix techniques655
A.4.1 Variable reordering656
A.5 Iterative techniques656
A.5.1 Conjugate gradient657
A.5.2 Preconditioning659
A.5.3 Multigrid660
B Bayesian modeling and inference661
B.1 Estimation theory662
B.1.1 Likelihood for multivariate Gaussian noise663
B.2 Maximum likelihood estimation and least squares665
B.3 Robust statistics666
B.4 Prior models and Bayesian inference667
B.5 Markov random fields668
B.5.1 Gradient descent and simulated annealing670
B.5.2 Dynamic programming670
B.5.3 Belief propagation672
B.5.4 Graph cuts674
B.5.5 Linear programming676
B.6 Uncertainty estimation (error analysis)678
C Supplementary material679
C.1 Data sets680
C.2 Software682
C.3 Slides and lectures689
C.4 Bibliography690
References691
Index793
1 Introduction1
2 Image formation27
3 Image processing87
4 Feature detection and matching181
5 Segmentation235
6 Feature-based alignment273
7 Structure from motion303
8 Dense motion estimation335
9 Image stitching375
10 Computational photography409
11 Stereo correspondence467
12 3D reconstruction505
13 Image-based rendering543
14 Recognition575
热门推荐
- 1611132.html
- 676453.html
- 3722224.html
- 378318.html
- 1834390.html
- 2130852.html
- 1929645.html
- 1619852.html
- 431932.html
- 2438682.html
- http://www.ickdjs.cc/book_52321.html
- http://www.ickdjs.cc/book_3271410.html
- http://www.ickdjs.cc/book_3802036.html
- http://www.ickdjs.cc/book_1319110.html
- http://www.ickdjs.cc/book_644887.html
- http://www.ickdjs.cc/book_1725845.html
- http://www.ickdjs.cc/book_2045562.html
- http://www.ickdjs.cc/book_2041865.html
- http://www.ickdjs.cc/book_923887.html
- http://www.ickdjs.cc/book_1130122.html