图书介绍
迁移学习 理论与实践2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 邵浩著 著
- 出版社: 上海:上海交通大学出版社
- ISBN:9787313106568
- 出版时间:2013
- 标注页数:121页
- 文件大小:16MB
- 文件页数:130页
- 主题词:数据采集-研究
PDF下载
下载说明
迁移学习 理论与实践PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Introduction1
1.1 Background and Motivation1
1.2 Contributions5
1.2.1 Extended MDLP for Transfer Learning5
1.2.2 Compact Coding for Hyperplane Classifiers in Transfer Learning6
1.2.3 Transfer Active Learning7
1.2.4 Gaussian Process for Transfer Learning8
1.3 Book Overview9
Chapter 2 Literature Review and Preliminaries for MDLP10
2.1 Transfer Learning10
2.2 Active Learning and Transfer Active Learning13
2.3 Preliminaries for MDLP14
Chapter 3 Extended MDL Principle for Feature-based Transfer Learning17
3.1 Introduction17
3.2 Problem Statement20
3.3 Preliminaries for Encoding21
3.3.1 Theoretical Foundation of the EMDLP22
3.3.2 Adaptation of the EMDLP to Our Problem25
3.4 Supervised Inductive Transfer Learning Algorithm30
3.4.1 EMDLP with Incremental Search30
3.4.2 EMDLP with Hill Climbing33
3.5 Experiments36
3.5.1 Experimental Settings36
3.5.2 Experimental Results on Synthetic Data Sets40
3.5.3 Experimental Results on Real Data Sets45
3.6 Summary52
Chapter 4 Compact Coding for Hyperplane Classifiers in a Heterogeneous Environment53
4.1 Introduction53
4.2 Problem Setting55
4.3 Compact Coding for Hyperplane Classifiers in Heterogeneous Environment56
4.3.1 Macro Level:Arrange Related Tasks57
4.3.2 Micro Level Evaluation61
4.3.3 The Transfer Learning Algorithm62
4.4 Experiments63
4.4.1 Experimental Setting63
4.4.2 Experimental Results65
4.5 Summary71
Chapter 5 Adaptive Transfer Learning with Query by Committee72
5.1 Introduction72
5.2 Problem Setting and Preliminaries75
5.3 Probabilistic Framework for ALTL78
5.4 The ALTL Algorithm and Analysis81
5.4.1 The Procedure of ALTL81
5.4.2 Termination Condition and Analysis83
5.5 Experiments85
5.5.1 Experimental Setting85
5.5.2 Results on Synthetic Data Sets85
5.5.3 Results on Real Data Sets89
5.6 Summary93
Chapter 6 Gaussian Process for Transfer Learning through Minimum Encoding94
6.1 Introduction94
6.2 Gaussian Process for Classification96
6.3 The GPTL Algorithm97
6.3.1 Arrange Related Tasks97
6.3.2 The Instance Level Similarities99
6.4 Experiments100
6.5 Summary104
Chapter 7 Concluding Comments106
Appendix A Target Concepts in Chapter 3110
Bibliography113
热门推荐
- 690952.html
- 289095.html
- 2359052.html
- 896494.html
- 598387.html
- 38070.html
- 3327031.html
- 2579453.html
- 2594755.html
- 1941479.html
- http://www.ickdjs.cc/book_582493.html
- http://www.ickdjs.cc/book_2901865.html
- http://www.ickdjs.cc/book_2378453.html
- http://www.ickdjs.cc/book_2279078.html
- http://www.ickdjs.cc/book_3702953.html
- http://www.ickdjs.cc/book_1481557.html
- http://www.ickdjs.cc/book_683528.html
- http://www.ickdjs.cc/book_830736.html
- http://www.ickdjs.cc/book_3758968.html
- http://www.ickdjs.cc/book_175152.html