图书介绍
计算物理 英文版·第2版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 乔达诺,纳卡尼什著 著
- 出版社: 北京:清华大学出版社
- ISBN:7302165726
- 出版时间:2007
- 标注页数:544页
- 文件大小:77MB
- 文件页数:558页
- 主题词:计算物理学-英文
PDF下载
下载说明
计算物理 英文版·第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 A First Numerical Problem1
1.1 Radioactive Decay1
1.2 A Numerical Approach2
1.3 Design and Construction of a Working Program:Codes and Pseu-docodes3
1.4 Testing Your Program11
1.5 Numerical Considerations12
1.6 Programming Guidelines and Philosophy14
2 Realistic Projectile Motion18
2.1 Bicycle Racing:The Effect of Air Resistance18
2.2 Projectile Motion:The Trajectory of a Cannon Shell25
2.3 Baseball:Motion of a Batted Ball31
2.4 Throwing a Baseball:The Effects of Spin36
2.5 Golf44
3 Oscillatory Motion and Chaos48
3.1 Simple Harmonic Motion48
3.2 Making the Pendulum More Interesting:Adding Dissipation,Non-linearity and a Driving Force54
3.3 Chaos in the Driven Nonlinear Pendulum58
3.4 Routes to Chaos:Period Doubling66
3.5 The Logistic Map:Why the Period Doubles70
3.6 The Lorenz Model75
3.7 The Billiard Problem82
3.8 Behavior in the Frequency Domain:Chaos and Noise88
4 The Solar System94
4.1 Kepler's Laws94
4.2 The Inverse-Square Law and the Stability of Planetary Orbits101
4.3 Precession of the Perihelion of Mercury107
4.4 The Three-Body Problem and the Effect of Jupiter on Earth113
4.5 Resonances in the Solar System:Kirkwood Gaps and Planetary Rings118
4.6 Chaotic Tumbling of Hyperion123
5 Potentials and Fields129
5.1 Electric Potentials and Fields:Laplace's Equation129
5.2 Potentials and Fields Near Electric Charges143
5.3 Magnetic Field Produced by a Current148
5.4 Magnetic Field of a Solenoid:Inside and Out151
6 Waves156
6.1 Waves:The Ideal Case156
6.2 Frequency Spectrum of Waves on a String165
6.3 Motion of a (Somewhat)Realistic String169
6.4 Waves on a String(Again):Spectral Methods174
7 Random Systems181
7.1 Why Perform Simulations of Random Processes?181
7.2 Random Walks183
7.3 Self-Avoiding Walks188
7.4 Random Walks and Diffusion195
7.5 Diffusion,Entropy,and the Arrow of Time201
7.6 Cluster Growth Models206
7.7 Fractal Dimensionalities of Curves212
7.8 Percolation218
7.9 Diffusion on Fractals229
8 Statistical Mechanics,Phase Transitions,and the Ising Model235
8.1 The Ising Model and Statistical Mechanics235
8.2 Mean Field Theory239
8.3 The Monte Carlo Method244
8.4 The Ising Model and Second-Order Phase Transitions246
8.5 First-Order Phase Transitions259
8.6 Scaling264
9 Molecular Dynamics270
9.1 Introduction to the Method:Properties of a Dilute Gas270
9.2 The Melting Transition285
9.3 Equipartition and the Fermi-Pasta-Ulam Problem294
10 Quantum Mechanics303
10.1 Time-Independent Schr?dinger Equation:Some Preliminaries303
10.2 One Dimension:Shooting and Matching Methods307
10.3 A Matrix Approach323
10.4 A Variational Approach326
10.5 Time-Dependent Schr?dinger Equation:Direct Solutions333
10.6 Time-Dependent Schr?dinger Equation in Two Dimensions345
10.7 Spectral Methods349
11 Vibrations,Waves,and the Physics of Musical Instruments357
11.1 Plucking a String:Simulating a Guitar357
11.2 Striking a String:Pianos and Hammers362
11.3 Exciting a Vibrating System with Friction:Violins and Bows367
11.4 Vibrations of a Membrane:Normal Modes and Eigenvalue Problems372
11.5 Generation of Sound382
12 Interdisciplinary Topics389
12.1 Protein Folding389
12.2 Earthquakes and Self-Organized Criticality405
12.3 Neural Networks and the Brain418
12.4 Real Neurons and Action Potentials436
12.5 Cellular Automata445
APPENDICES456
A Ordinary Differential Equations with Initial Values456
A.1 First-Order,Ordinary Differential Equations456
A.2 Second-Order,Ordinary Differential Equations460
A.3 Centered Difference Methods464
A.4 Summary467
B Root Finding and Optimization469
B.1 Root Finding469
B.2 Direct Optimization472
B.3 Stochastic Optimization473
C The Fourier Transform479
C.1 Theoretical Background479
C.2 Discrete Fourier Transform481
C.3 Fast Fourier Transform (FFT)483
C.4 Examples:Sampling Interval and Number of Data Points486
C.5 Examples:Aliasing488
C.6 Power Spectrum490
D Fitting Data to a Function493
D.1 Introduction493
D.2 Method of Least Squares:Linear Regression for Two Variables494
D.3 Method of Least Squares:More General Cases497
E Numerical Integration500
E.1 Motivation500
E.2 Newton-Cotes Methods:Using Discrete Panels to Approximate an Integral500
E.3 Gaussian Quadrature:Beyond Classic Methods of Numerical Inte-gration504
E.4 Monte Carlo Integration506
F Generation of Random Numbers512
F.1 Linear Congruential Generators512
F.2 Nonuniform Random Numbers516
G Statistical Tests of Hypotheses520
G.1 Central Limit Theorem and the x2 Distribution521
G.2 x2 Test of a Hypothesis523
H Solving Linear Systems527
H.1 Solving Ax=b,b≠O528
H.1.1 Gaussian Elimination528
H.1.2 Gauss-Jordan elimination530
H.1.3 LU decomposition531
H.1.4 Relaxational method533
H.2 Eigenvalues and Eigenfunctions535
H.2.1 Approximate Solution of Eigensystems537
Index541
热门推荐
- 3771762.html
- 3639421.html
- 2351755.html
- 3369633.html
- 2858229.html
- 1820815.html
- 2023126.html
- 960561.html
- 3166385.html
- 3428758.html
- http://www.ickdjs.cc/book_2649406.html
- http://www.ickdjs.cc/book_3001605.html
- http://www.ickdjs.cc/book_3489572.html
- http://www.ickdjs.cc/book_1665214.html
- http://www.ickdjs.cc/book_2173369.html
- http://www.ickdjs.cc/book_552865.html
- http://www.ickdjs.cc/book_777996.html
- http://www.ickdjs.cc/book_2820643.html
- http://www.ickdjs.cc/book_751979.html
- http://www.ickdjs.cc/book_2647345.html