图书介绍
分析方法 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)RobertS.Strichartz著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510005565
- 出版时间:2010
- 标注页数:739页
- 文件大小:127MB
- 文件页数:758页
- 主题词:数学分析-分析方法-英文
PDF下载
下载说明
分析方法 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Preliminaries1
1.1 The Logic of Quantifiers1
1.1.1 Rules of Quantifiers1
1.1.2 Examples4
1.1.3 Exercises7
1.2 Infinite Sets8
1.2.1 Countable Sets8
1.2.2 Uncountable Sets10
1.2.3 Exercises13
1.3 Proofs13
1.3.1 How to Discover Proofs13
1.3.2 How to Understand Proofs17
1.4 The Rational Number System18
1.5 The Axiom of Choice21
2 Construction of the Real Number System25
2.1 Cauchy Sequences25
2.1.1 Motivation25
2.1.2 The Definition30
2.1.3 Exercises37
2.2 The Reals as an Ordered Field38
2.2.1 Defining Arithmetic38
2.2.2 The Field Axioms41
2.2.3 Order45
2.2.4 Exercises48
2.3 Limits and Completeness50
2.3.1 Proof of Completeness50
2.3.2 Square Roots52
2.3.3 Exercises54
2.4 Other Versions and Visions56
2.4.1 Infinite Decimal Expansions56
2.4.2 Dedekind Cuts59
2.4.3 Non-Standard Analysis63
2.4.4 Constructive Analysis66
2.4.5 Exercises68
2.5 Summary69
3 Topology of the Real Line73
3.1 The Theory of Limits73
3.1.1 Limits,Sups,and Infs73
3.1.2 Limit Points78
3.1.3 Exercises84
3.2 Open Sets and Closed Sets86
3.2.1 Open Sets86
3.2.2 Closed Sets91
3.2.3 Exercises98
3.3 Compact Sets99
3.3.1 Exercises106
3.4 Summary107
4 Continuous Functions111
4.1 Concepts of Continuity111
4.1.1 Definitions111
4.1.2 Limits of Functions and Limits of Sequences119
4.1.3 Inverse Images of Open Sets121
4.1.4 Related Definitions123
4.1.5 Exercises125
4.2 Properties of Continuous Functions127
4.2.1 Basic Properties127
4.2.2 Continuous Functions on Compact Domains131
4.2.3 Monotone Functions134
4.2.4 Exercises138
4.3 Summary140
5 Differential Calculus143
5.1 Concepts of the Derivative143
5.1.1 Equivalent Definitions143
5.1.2 Continuity and Continuous Differentiability148
5.1.3 Exercises152
5.2 Properties of the Derivative153
5.2.1 Local Properties153
5.2.2 Intermediate Value and Mean Value Theorems157
5.2.3 Global Properties162
5.2.4 Exercises163
5.3 The Calculus of Derivatives165
5.3.1 Product and Quotient Rules165
5.3.2 The Chain Rule168
5.3.3 Inverse Function Theorem171
5.3.4 Exercises176
5.4 Higher Derivatives and Taylor's Theorem177
5.4.1 Interpretations of the Second Derivative177
5.4.2 Taylor's Theorem181
5.4.3 L'H?pital's Rule185
5.4.4 Lagrange Remainder Formula188
5.4.5 Orders of Zeros190
5.4.6 Exercises192
5.5 Summary195
6 Integral Calculus201
6.1 Integrals of Continuous Functions201
6.1.1 Existence of the Integral201
6.1.2 Fundamental Theorems of Calculus207
6.1.3 Useful Integration Formulas212
6.1.4 Numerical Integration214
6.1.5 Exercises217
6.2 The Riemann Integral219
6.2.1 Definition of the Integral219
6.2.2 Elementary Properties of the Integral224
6.2.3 Functions with a Countable Number of Discon-tinuities227
6.2.4 Exercises231
6.3 Improper Integrals232
6.3.1 Definitions and Examples232
6.3.2 Exercises235
6.4 Summary236
7 Sequences and Series of Functions241
7.1 Complex Numbers241
7.1.1 Basic Properties of C241
7.1.2 Complex-Valued Functions247
7.1.3 Exercises249
7.2 Numerical Series and Sequences250
7.2.1 Convergence and Absolute Convergence250
7.2.2 Rearrangements256
7.2.3 Summation by Parts260
7.2.4 Exercises262
7.3 Uniform Convergence263
7.3.1 Uniform Limits and Continuity263
7.3.2 Integration and Differentiation of Limits268
7.3.3 Unrestricted Convergence272
7.3.4 Exercises274
7.4 Power Series276
7.4.1 The Radius of Convergence276
7.4.2 Analytic Continuation281
7.4.3 Analytic Functions on Complex Domains286
7.4.4 Closure Properties of Analytic Functions288
7.4.5 Exercises294
7.5 Approximation by Polynomials296
7.5.1 Lagrange Interpolation296
7.5.2 Convolutions and Approximate Identities297
7.5.3 The Weierstrass Approximation Theorem301
7.5.4 Approximating Derivatives305
7.5.5 Exercises307
7.6 Equicontinuity309
7.6.1 The Definition of Equicontinuity309
7.6.2 The Arzela-Ascoli Theorem312
7.6.3 Exercises314
7.7 Summary316
8 Transcendental Functions323
8.1 The Exponential and Logarithm323
8.1.1 Five Equivalent Definitions323
8.1.2 Exponential Glue and Blip Functions329
8.1.3 Functions with Prescribed Taylor Expansions332
8.1.4 Exercises335
8.2 Trigonometric Functions337
8.2.1 Definition of Sine and Cosine337
8.2.2 Relationship Between Sines,Cosines,and Com-plex Exponentials344
8.2.3 Exercises349
8.3 Summary350
9 Euclidean Space and Metric Spaces355
9.1 Structures on Euclidean Space355
9.1.1 Vector Space and Metric Space355
9.1.2 Norm and Inner Product358
9.1.3 The Complex Case364
9.1.4 Exercises366
9.2 Topology of Metric Spaces368
9.2.1 Open Sets368
9.2.2 Limits and Closed Sets373
9.2.3 Completeness374
9.2.4 Compactness377
9.2.5 Exercises384
9.3 Continuous Functions on Metric Spaces386
9.3.1 Three Equivalent Definitions386
9.3.2 Continuous Functions on Compact Domains391
9.3.3 Connectedness393
9.3.4 The Contractive Mapping Principle397
9.3.5 The Stone-Weierstrass Theorem399
9.3.6 Nowhere Differentiable Functions,and Worse403
9.3.7 Exercises409
9.4 Summary412
10 Differential Calculus in Euclidean Space419
10.1 The Differehtial419
10.1.1 Definition of Differentiability419
10.1.2 Partial Derivatives423
10.1.3 The Chain Rule428
10.1.4 Differentiation of Integrals432
10.1.5 Exercises435
10.2 Higher Derivatives437
10.2.1 Equality of Mixed Partials437
10.2.2 Local Extrema441
10.2.3 Taylor Expansions448
10.2.4 Exercises452
10. 3 Summary454
11 Ordinary Differential Equations459
11.1 Existence and Uniqueness459
11.1.1 Motivation459
11.1.2 Picard Iteration467
11.1.3 Linear Equations473
11.1.4 Local Existence and Uniqueness476
11.1.5 Higher Order Equations481
11.1.6 Exercises483
11.2 Other Methods of Solution485
11.2.1 Difference Equation Approximation485
11.2.2 Peano Existence Theorem490
11.2.3 Power-Series Solutions494
11.2.4 Exercises500
11.3 Vector Fields and Flows501
11.3.1 Integral Curves501
11.3.2 Hamiltonian Mechanics505
11.3.3 First-Order Linear P.D.E.'s506
11.3.4 Exercises507
11.4 Summary509
12 Fourier Series515
12.1 Origins of Fourier Series515
12.1.1 Fourier Series Solutions of P.D.E.'s515
12.1.2 Spectral Theory520
12.1.3 Harmonic Analysis525
12.1.4 Exercises528
12.2 Convergence of Fourier Series531
12.2.1 Uniform Convergence for C1 Functions531
12.2.2 Summability of Fourier Series537
12.2.3 Convergence in the Mean543
12.2.4 Divergence and Gibb's Phenomenon550
12.2.5 Solution of the Heat Equation555
12.2.6 Exercises559
12.3 Summary562
13 Implicit Functions,Curves,and Surfaces567
13.1 The Implicit Function Theorem567
13.1.1 Statement of the Theorem567
13.1.2 The Proof573
13.1.3 Exercises580
13.2 Curves and Surfaces581
13.2.1 Motivation and Examples581
13.2.2 Immersions and Embeddings585
13.2.3 Parametric Description of Surfaces591
13.2.4 Implicit Description of Surfaces597
13.2.5 Exercises600
13.3 Maxima and Minima on Surfaces602
13.3.1 Lagrange Multipliers602
13.3.2 A Second Derivative Test605
13.3.3 Exercises609
13.4 Arc Length610
13.4.1 Rectifiable Curves610
13.4.2 The Integral Formula for Arc Length614
13.4.3 Arc Length Parameterization616
13.4.4 Exercises617
13.5 Summary618
14 The Lebesgue Integral623
14.1 The Concept of Measure623
14.1.1 Motivation623
14.1.2 Properties of Length627
14.1.3 Measurable Sets631
14.1.4 Basic Properties of Measures634
14.1.5 A Formula for Lebesgue Measure636
14.1.6 Other Examples of Measures639
14.1.7 Exercises641
14.2 Proof of Existence of Measures643
14.2.1 Outer Measures643
14.2.2 Metric Outer Measure647
14.2.3 Hausdorff Measures650
14.2.4 Exercises654
14.3 The Integral655
14.3.1 Non-negative Measurable Functions655
14.3.2 The Monotone Convergence Theorem660
14.3.3 Integrable Functions664
14.3.4 Almost Everywhere667
14.3.5 Exercises668
14.4 The Lebesgue Spaces L1 and L2670
14.4.1 L1 as a Banach Space670
14.4.2 L2 as a Hilbert Space673
14.4.3 Fourier Series for L2 Functions676
14.4.4 Exercises681
14.5 Summary682
15 Multiple Integrals691
15.1 Interchange of Integrals691
15.1.1 Integrals of Continuous Functions691
15.1.2 Fubini's Theorem694
15.1.3 The Monotone Class Lemma700
15.1.4 Exercises703
15.2 Change of Variable in Multiple Integrals705
15.2.1 Determinants and Volume705
15.2.2 The Jacobian Factor709
15.2.3 Polar Coordinates714
15.2.4 Change of Variable for Lebesgue Integrals717
15.2.5 Exercises720
15.3 Summary722
Index727
热门推荐
- 1002998.html
- 1763211.html
- 3499370.html
- 3020926.html
- 3441132.html
- 3739767.html
- 2806131.html
- 2596363.html
- 1644968.html
- 3496193.html
- http://www.ickdjs.cc/book_1347232.html
- http://www.ickdjs.cc/book_2651966.html
- http://www.ickdjs.cc/book_76939.html
- http://www.ickdjs.cc/book_3012528.html
- http://www.ickdjs.cc/book_2092242.html
- http://www.ickdjs.cc/book_2139448.html
- http://www.ickdjs.cc/book_3310801.html
- http://www.ickdjs.cc/book_2317942.html
- http://www.ickdjs.cc/book_3621328.html
- http://www.ickdjs.cc/book_2704190.html