图书介绍

THE LOCATION OF CRITICAL POINTS OF ANALYTIC AND HARMONIC FUNCTIONS2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

THE LOCATION OF CRITICAL POINTS OF ANALYTIC AND HARMONIC FUNCTIONS
  • J.L. WALSH 著
  • 出版社: AMERICAN MATHEMATICAL SOCIETY
  • ISBN:
  • 出版时间:1950
  • 标注页数:384页
  • 文件大小:132MB
  • 文件页数:392页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

THE LOCATION OF CRITICAL POINTS OF ANALYTIC AND HARMONIC FUNCTIONSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER Ⅰ.FUNDAMENTAL RESULTS1

1.1.Terminology.Preliminaries1

1.1.1.Point set terminology1

1.1.2.Function-theoretic preliminaries2

1.2.Gauss's Theorem5

1.3.Lucas's Theorem6

1.3.1.Statement and proof6

1.3.2.Complements8

1.4.Jensen's Theorem9

1.4.1.Proof10

1.4.2.Complements11

1.5.Walsh's Theorem13

1.5.1.Preliminaries13

1.5.2.Proof15

1.6.Lemniscates17

1.6.1.Level curves17

1.6.2.Lemniscates and their orthogonal trajectories18

1.6.3.Behavior at infinity21

CHAPTER Ⅱ.REAL POLYNOMIALS24

2.1.Polynomials with real zeros24

2.2.Jensen's Theorem,continued27

2.2.1.Special cases28

2.2.2.A region for non-real critical points29

2.3.Number of critical points31

2.4.Reality and non-reality of critical points32

2.4.1.Sufficient conditions for non-real critical points32

2.4.2.Sufficient conditions for real critical points33

2.4.3.Real critical points,continued36

2.5.Jensen configuration improved38

2.6.W-curves40

2.6.1.General results41

2.6.2.Real polynomials44

2.6.3.Zeros on horizontal segments49

2.7.Non-real polynomials52

2.7.1.Jensen circles52

2.7.2.Infinite sectors55

CHAPTER Ⅲ.POLYNOMIALS,CONTINUED58

3.1.Infinite circular regions as loci58

3.1.1.Exterior of a circle58

3.1.2.Half-planes60

3.2.A characteristic property of circular regions62

3.3.Critical points of real polynomials as centers of circles63

3.4.Lucas polygon improved68

3.5.The Lucas polygons for a polynomial and its derivative71

3.5.1.Relations of convex sets71

3.5.2.Dependence of zeros of polynomial on those of its derivative73

3.6.Symmetry in the origin75

3.6.1.Ordinary symmetry75

3.6.2.Multiple symmetry in O78

3.7.Circular regions and symmetry80

3.8.Higher derivatives83

3.9.Further results87

CHAPTER Ⅳ.RATIONAL FUNCTIONS89

4.1.Field of force89

4.1.1.Fundamental theorem89

4.1.2.Transformations of the plane92

4.1.3.Stereographic projection94

4.2.Bocher's Theorem97

4.2.1.Proof98

4.2.2.Locus of critical points99

4.2.3.Specializations101

4.2.4.Circular regions as loci103

4.2.5.Converse105

4.3.Concentric circular regions as loci106

4.4.The cross-ratio theorem109

4.4.1.Geometric locus109

4.4.2.Discussion of locus113

4.4.3.Locus of critical points115

4.4.4.Generalizations120

4.5.Marden's Theorem121

CHAPTER Ⅴ.RATIONAL FUNCTIONS WITH SYMMETRY123

5.1.Real rational functions123

5.1.1.Real zeros and poles123

5.1.2.Non-real zeros125

5.1.3.Regions as loci128

5.1.4.Regions as loci,continued131

5.1.5.W-curves135

5.2.Zeros and poles concyclic138

5.2.1.Zeros and poles interlaced139

5.2.2.Extensions141

5.2 3.Critical points near a given zero145

5.2.4.Continuation148

5.2.5.Zeros and poles on prescribed arcs152

5.3.Hyperbolic plane156

5.3.1.Analog of Lucas's Theorem157

5.3.2.Extensions159

5.3.3.Analog of Jensen's Theorem163

5.3.4.Circular regions as loci165

5.3.5.Analog of B?cher's Theorem169

5.3.6.Continuation170

5.3.7.NE half-planes as loci172

5.4.Elliptic plane176

5.4.1.Analog of Bocher's Theorem176

5.4.2.Circular regions as loei178

5.5.Symmetry in the origin181

5.5.1.Regions bounded by concentric circles181

5.5.2.Regions bounded by equilateral hyperbolas183

5.5.3.Circular regions as loci of zeros and poles186

5.5.4.Multiple symmetry in O189

5.5.5.Multiple symmetry in O,continued191

5.5.6.Polynomials and multiple symmetry in O193

5.6.Skew symmetry in O194

5.6.1.Sectors containing zeros and poles194

5.6.2.W-curves197

5.7.Symmetry in z and 1/z202

5.7.1.Polynomials in z and 1/z202

5.7.2.General rational functions206

5.8.Miscellaneous results208

5.8.1.Combinations of symmetries208

5.8.2.Circular regions and symmetry in a line209

5.8.3.Circular regions and real polynomials212

CHAPTER Ⅵ.ANALYTIC FUNCTIONS217

6.1.Entire and meromorphic functions217

6.2.The hyperbolic plane221

6.2.1.Analytic and meromorphic functions221

6.2.2.Blaschke products223

6.3.Functions with multiplicative periods224

6.3.1.Uniform functions224

6.3.2.Non-uniform functions227

6.4.Simply periodic functions231

6.4.1.General theorems232

6.4.2.Functions with symmetry234

6.5.Doubly periodic functions235

6.6.General analytic functions236

6.7.Analytic functions and harmonic functions240

CHAPTER Ⅶ.GREEN'S FUNCTIONS241

7.1.Topology241

7.1.1.Level curves241

7.1.2.Variable regions243

7.1.3.A formula for Green's function245

7.1.4.Level curves and lemniscates247

7.2.Geometry of level loci249

7.2.1.Analog of Lucas's Theorem249

7.2.2.Center of curvature252

7.3.Symmetry in axis of reals255

7.3.1.Analog of Jensen's Theorem255

7.3.2.Number of critical points257

7.4.Analog of Walsh's Theorem259

7.4.1.Numbers of critical points259

7.4.2.Numbers of critical points,alternate treatment262

7.4.3.Symmetry263

7.4.4.Inequalities on masses264

7.4.5.Circles with collinear centers266

7.5.Doubly-connected regions266

CHAPTER Ⅷ.HARMONIC FUNCTIONS269

8.1.Topology269

8.1.1.Level loci269

8.1.2.A formula for harmonic measure271

8.1.3.Number of critical points274

8.2.Analog of B?cher's Theorem275

8.3.A cross-ratio theorem278

8.4.Hyperbolic plane279

8.5.Other symmetries283

8.6.Periodic functions286

8.7.Harmonic measure,Jordan region288

8.7.1.Finite number of arcs288

8.7.2.Infinite number of arcs290

8.8.Hyperbolic geometry and conformal mapping292

8.8.1.Doubly-connected region292

8.8.2.Case p>2293

8.9.Linear combinations of Green's functions294

8.9.1.Simply-connected region295

8.9.2.Regions of arbitrary connectivity296

8.9.3.Multiply-connected regions299

8.10.Harmonic measure of arcs300

8.10.1.Doubly-connected regions300

8.10.2.Arbitrary connectivity301

8.10.3.Approximating circular regions302

CHAPTER Ⅸ.FURTHER HARMONIC FUNCTIONS304

9.1.A general field of force304

9.2.Harmonic measure of arcs307

9.2.1.A single arc307

9.2.2.Several arcs308

9.2.3.Linear combinations310

9.3.Arcs of a circle312

9.3.1.Disjoint arcs313

9.3.2.Abutting arcs315

9.3.3.Poisson's integral317

9.3.4.Poisson's integral as potential of a double distribution319

9.3.5.Harmonic functions and rational functions322

9.4.A circle as partial boundary324

9.4.1.Harmonic measure324

9.4.2.Linear combinations327

9.4.3.Harmonic measure,resumed329

9.4.4.Symmetry330

9.4.5.Symmetry,several arcs333

9.4.6.Case p>1337

9.5.Green's functions and harmonic measures339

9.5.1.A numerical example339

9.5.2.General linear combinations341

9.6.Limits of boundary components344

9.6.1.Hyperbolic geometry344

9.6.2.Comparison of hyperbolic geometries346

9.7.Methods of symmetry348

9.7.1.Reflection in axis349

9.7.2.Reflection in point353

9.7.3.Reflection of an annulus,Green's function356

9.7.4.Reflection of an annulus,harmonic measure358

9.8.Topological methods360

9.8.1.Simple-connectivity360

9.8.2.Higher connectivity362

9.8.3.Contours with boundary values zero364

9.9.Assigned distributions of matter365

9.9.1.Simple layers365

9.9.2.Superharmonic functions366

9.9.3.Double layers370

BIBLIOGRAPHY377

INDEX381

热门推荐