图书介绍

线性偏微分算子分析 第2卷2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

线性偏微分算子分析 第2卷
  • (瑞典)赫尔曼德尔著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7519209278
  • 出版时间:2016
  • 标注页数:392页
  • 文件大小:46MB
  • 文件页数:402页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

线性偏微分算子分析 第2卷PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction1

Chapter Ⅹ.Existence and Approximation of Solutions of Differential Equations3

Summary3

10.1.The Spaces Bp,k3

10.2.Fundamental Solutions16

10.3.The Equation P(D)u=f when f∈?′29

10.4.Comparison of Differential Operators32

10.5.Approximation of Solutions of Homogeneous Differential Equations39

10.6.The Equation P(D)u=f when f is in a Local Space ?′F41

10.7.The Equation P(D)u=f when f∈?′(X)45

10.8.The Geometrical Meaning of the Convexity Conditions50

Notes58

Chapter Ⅺ.Interior Regularity of Solutions of Differential Equations60

Summary60

11.1.Hypoelliptic Operators61

11.2.Partially Hypoelliptic Operators69

11.3.Continuation of Differentiability73

11.4.Estimates for Derivatives of High Order85

Notes92

Chapter Ⅻ.The Cauchy and Mixed Problems94

Summary94

12.1.The Cauchy Problem for the Wave Equation96

12.2.The Oscillatory Cauchy Problem for the Wave Equation104

12.3.Necessary Conditions for Existence and Uniqueness of Solutions to the Cauchy Problem110

12.4.Properties of Hyperbolic Polynomials112

12.5.The Cauchy Problem for a Hyperbolic Equation120

12.6.The Singularities of the Fundamental Solution125

12.7.A Global Uniqueness Theorem133

12.8.The Characteristic Cauchy Problem143

12.9.Mixed Problems162

Notes180

Chapter ⅩⅢ.Differential Operators of Constant Strength182

Summary182

13.1.Definitions and Basic Properties182

13.2.Existence Theorems when the Coefficients are Merely Continuous184

13.3.Existence Theorems when the Coefficients are in C∞186

13.4.Hypoellipticity191

13.5.Global Existence Theorems194

13.6.Non-uniqueness for the Cauchy Problem201

Notes224

Chapter ⅩⅣ.Scattering Theory225

Summary225

14.1.Some Function Spaces227

14.2.Division by Functions with Simple Zeros232

14.3.The Resolvent of the Unperturbed Operator237

14.4.Short Range Perturbations243

14.5.The Boundary Values of the Resolvent and the Point Spectrum251

14.6.The Distorted Fourier Transforms and the Continuous Spectrum255

14.7.Absence of Embedded Eigenvalues264

Notes268

Chapter ⅩⅤ.Analytic Function Theory and Differential Equations270

Summary270

15.1.The Inhomogeneous Cauchy-Riemann Equations271

15.2.The Fourier-Laplace Transform of Bc2,k(X)when X is Convex279

15.3.Fourier-Laplace Representation of Solutions of Differential Equations287

15.4.The Fourier-Laplace Transform of C?(X)when X is Convex296

Notes300

Chapter ⅩⅥ.Convolution Equations302

Summary302

16.1.Subharmonic Functions303

16.2.Plurisubharmonic Functions314

16.3.The Support and Singular Support of a Convolution319

16.4.The Approximation Theorem335

16.5.The Inhomogeneous Convolution Equation341

16.6.Hypoelliptic Convolution Equations353

16.7.Hyperbolic Convolution Equations356

Notes360

Appendix A.Some Algebraic Lemmas362

A.1.The Zeros of Analytic Functions362

A.2.Asymptotic Properties of Algebraic Functions of Several Variables364

Notes371

Bibliography373

Index391

Index of Notation392

热门推荐