图书介绍

表面物理学概念 第2版 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

表面物理学概念 第2版 英文
  • (法)德容凯尔著 著
  • 出版社: 世界图书出版公司北京公司
  • ISBN:7510035142
  • 出版时间:2011
  • 标注页数:605页
  • 文件大小:22MB
  • 文件页数:621页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

表面物理学概念 第2版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1. Introduction1

2. Thermodynamical and Statistical Properties of Clean Surfaces4

2.1 Thermodynamics of a Surface at Equilibrium4

2.2 Equilibrium Shape of a Crystal7

2.3 Facetting13

2.4 The Roughening Transition15

2.4.1 Generalities15

2.4.2 Macroscopic Approach: The Continuum Limit16

a) One Dimensional Case: Statistics of a Step16

b) The Two Dimensional Case: Statistics of a Surface25

2.4.3 Microscopic Approach29

a) Equilibrium Shape of a Step Edge29

b) Equilibrium Shape of a Surface:The Roughening Transition34

2.4.4 Consequences of the Roughening Transition for the Equilibrium Shape of Crystals and for Crystal Growth41

2.4.5 Experimental Evidences of the Roughening Transition41

2.4.6 Special Cases of Vicinal Surfaces43

Problems43

3. Atomic Structure of Surfaces48

3.1 Surface Crystallography48

3.1.1 Two-Dimensional Lattices48

3.1.2 Semi-Infinite Crystals.Relaxation.Reconstruction49

3.1.3 Notations for Surface Structures51

3.1.4 Vicinal Surfaces53

3.1.5 Reciprocal Lattice and Brillouin Zones53

3.2 Experimental Techniques57

3.2.1 Observation of the Real Lattice57

a) Field-ion Microscopy (FIM)57

b) Scanning Tunneling Microscopy(STM)60

3.2.2 Observation of the Reciprocal Lattice63

a) Principles of Diffraction63

b) Low Energy Electron Diffraction(LEED)71

c) Atom Scattering74

d) X-ray Scattering at Grazing Incidence78

3.2.3 Indirect Methods86

a) Photoelectron Diffraction(PhD)86

b) Surface Extended X-ray Absorption Fine Structure(SEXAFS)93

c) Other Methods99

Problems101

4. Vibrations at Surfaces106

4.1 Elastic Forces in Crystals106

4.1.1 Dynamical Matrix106

4.1.2 Interatomic Forces108

a) Central Forces108

b) Angular Forces111

4.2 Bulk Modes112

4.3 Surface Modes114

4.3.1 Semi-Infinite Linear Chain115

a) M0≠M115

b) β0 ≠ β117

4.3.2 Semi-Infinite Crystals118

a) The Slab Method119

b) Exact Method for the Calculation of Surface Modes120

c) Relaxation and Reconstruction of Surfaces from Phonon Calculations124

d) Experimental Determination of Surface Modes128

4.3.3 Brief Remarks on Adsorbed Layers131

4.4 Spectral Densities of Modes133

4.5 Vibrational Thermodynamical Functions137

4.5.1 Surface Vibrational Entropy138

4.5.2 Surface Internal Energy139

4.5.3 Surface Specific Heat at Constant Volume139

4.6 Mean Square Displacements140

4.6.1 Theory140

4.6.2 Experimental Techniques143

a) Diffraction Experiments143

b) PhD and SEXAFS Experiments147

c) Conclusion152

Problems153

5. Electronic Structure of Surfaces162

5.1 Jellium Model163

5.1.1 The Free Electron Gas Bounded by Infinite Barriers164

a) One-dimensional Electron Gas164

b) Three-dimensional Electron Gas167

5.1.2 The Free Electron Gas Bounded by Finite Barriers170

5.1.3 The Jellium Model in the Local Density Functional Formalism177

a) Homogeneous Jellium178

b) General Case180

5.2 Nearly Free Electron Model-Surface States188

5.2.1 Nearly Free Electron Model for Bulk States188

5.2.2 Surface States in Simple Gaps (Gaps of Type A)197

5.2.3 Surface States in Gaps of Type B204

5.2.4 An Example: Al(001)210

a) Band Structure along the??Direction210

b) Band Structure along the??Direction211

5.2.5 Semiconductors215

5.3 Tight-Binding Approximation217

5.3.1 General Principles218

5.3.2 Computation Techniques for Semi-Infinite Crystals219

a) The Slab Method220

b) The Continued Fraction Technique220

c) Illustrative Examples224

5.4 Application of the Tight-Binding Approximation to Transition Metal Surfaces235

5.4.1 Brief Survey of Bulk Electronic Structure235

a) Band Structure235

b) Cohesive Energy238

5.4.2 Surface Densities of States and Potential242

5.4.3 Surface Energies247

5.4.4 Relaxation and Reconstruction from Energy Calculations251

5.5 Application of the Tight-Binding Approximation to Semiconductor Surfaces254

5.5.1 Brief Survey of Bulk Electronic Structure254

a) Band Structure254

b) Cohesive Energy265

5.5.2 Determination of the Surface Tight-Binding Parameters267

5.5.3 Qualitative Discussion of Surface States in Semiconductors268

5.5.4 Examples271

a) The (111) Surface of Si271

b) The (001) Surface of Si275

c) Brief Remarks on Heteropolar Semiconductor Surfaces283

5.6 Other Methods284

5.6.1 The Propagation Matrix Method284

a) Formulation of the Method284

b) The Layer KKR Method294

c) The Method of Appelbaum and Hamann303

5.6.2 Methods Using the Slab Geometry308

a) The Single Slab Geometry309

b) The Periodic Slab Geometry310

5.7 Surface Plasmons in Metals310

5.7.1 Summary of Bulk Plasmons in a Jellium311

a) Elementary Classical Theory: the Plasma Frequency311

b) Relation with the Dielectric Function:Dispersion of Plasmons312

5.7.2 Surface Plasmons in a Jellium320

a) The Simple Case of Charge Oscillations Strictly Localized in the Surface Plane320

b) The Surface Plasmon Dispersion323

5.7.3 Brief Remarks on the Effects of the Crystal Potential335

a) Bulk Plasmons335

b) Surface Plasmons338

5.8 Image Potential338

5.8.1 Response of a Semi-Infinte Jellium to a Uniform External Electric Field339

5.8.2 Interaction of an External Point Charge with a Semi-Infinite Jellium: the Image Potential342

5.8.3 Image Potential in a Dielectric Medium346

5.8.4 Image Surface States348

a) Basics of Image Surface States348

b) A New Formulation of the Criterion for the Existence of Surface States349

c) Determination of the Electron Reflectivity of the Surface Barrier351

d) Determination of the Reflectivity of the Crystal in the Nearly Free Electron Approximation352

e) “An Example: Surface States in the L Gap of Cu(111)353

f) Conclusion355

5.9 Some Further Remarks on Exchange and Correlation Energies355

5.9.1 Exchange and Correlations in a Semi-Infinite Jellium:Validity of the Local Density Functional Approximation356

5.9.2 Correlations in the Tight-Binding Formalism:The Hubbard Hamiltonian361

a) Electronic Correlations in a s Band362

b) Electronic Correlations in Degenerate Bands367

c) Influence on the Band Structure and Conclusions369

5.10 Experimental Techniques for Investigating the Electronic Structure370

5.10.1 Surface Core Level Spectroscopy371

a) Microscopic Approach372

b) Thermodynamical Model373

c) An Example: Surface Core Level Binding Energy Shifts in Ta and W375

5.10.2 Photoemission of Valence Electronic States377

a) Principle of the Determination of Dispersion Curves from Photoemission Spectra378

b) An Example of Bulk Dispersion Curves: Cu(110)381

c) An Example of a Surface State Dispersion Curve:Al(100)384

d) Brief Outline of the Principles of the Intensity Calculations in Photoemission385

5.10.3 Inverse Photoemission387

5.10.4 Spatially-Resolved Tunneling Spectroscopy389

5.10.5 Measurement of Surface Plasmons392

5.10.6 Measurement of the Work Function393

a) Vibrating Capacitor Method or Kelvin Method393

b) Field Emission394

c) Thermionic Emission Method394

d) Secondary Electron Method394

5.10.7 Measurement of Surface Energies395

a) Measurements Based on the Study of the Equilibrium Shape of Crystals395

b) Thermal Creep Under Tension395

c) Surface Energy of Liquid Metals396

Problems397

6.Adsorption Phenomena411

6.1 Thermodynamical Approach412

6.2 Statistical Methods416

6.2.1 Adsorption Isotherms in the Absence of Lateral Interactions Between Adatoms417

a) Monolayer Adsorption: Langmuir Isotherms417

b) Multilayer Adsorption: Brunauer, Emmett and Teller(BET)Isotherms420

6.2.2 The Two-Dimensional Lattice Gas423

a) Study of Isotherms: Condensation Phase Transition423

b) Order-disorder Transition in Adsorbed Layers432

6.3 Physisorption438

6.3.1 The Classical Electrostatic Interaction Between a Polar Particle and a Dielectric Surface438

a) Interaction between Two Dipoles438

b) Interaction between a Dipole and a Dielectric Surfa439

6.3.2 Interaction Between a Neutral Atom and a Dielectric Surface440

a) Van der Waals Interaction between Two Neutral Atoms in S-States440

b) Van der Waals Interaction between a Neutral Atom and a Dielectric Surface443

6.4 Chemisorption452

6.4.1 Generalities on Charge Transfer in Chemisorption455

a) Variation of the Ionization Energy456

b) Variation of the Affinity Energy457

6.4.2 Anderson -Grimley-Newns Hamiltonian458

a) Hartree-Fock Treatment458

b) Beyond the Hartree- Fock Treatment467

6.4.3 Chemisorption in the Local Density Functional Formalism469

a) Atomic Chemisorption on a Jellium Surface469

b) The Effective Medium Theory475

6.4.4 Chemisorption on Transition Metals in the Tight-Binding Approximation491

a) General Characteristics of the Models491

b) Analytical Models493

c) Improved Models498

d) An Example: Adsorption of Simple Elements on BCC Transition Metal Surfaces500

6.4.5 Vibrations of an Adsorbate505

a) Rigid Substrate Approximation: M.﹤M505

b) General Case512

c) Experiments512

6.4.6 Conclusions514

6.5 Interactions Between Adsorbates515

6.5.1 Experimental Data515

6.5.2 Theory of Adatom Adatom Interactions517

a) Electronic Interactions517

b) Dipolar Interactions523

c) Elastic Interactions524

6.5.3 Consequences of Adatom-Adatom Interactions and Conclusions525

6.6 Electronic Structure of Ordered Overlayers.An Example:O on Ni(l00)525

Problems528

Appendices539

A.Theory of Scattering by a Spherical Potential: Brief Summary539

A.1 Solution of the Schr?dinger Equation for a Particle in a Spherical Potential539

A.2 Scattering of a Free Particle by a Spherical Potential541

A.3 Friedels Sum Rule543

B.The Continued Fraction Technique545

B.1 Principle of the Recursion Method545

B.2 Principle of the Moment Method547

B.3 Practical Calculations549

C.Electromagnetic Waves in Matter552

C.1 Brief Summary of Maxwell Equations in Vacuum552

C.2 Maxwell Equations and Dielectric Properties in a Homogeneous and Isotropic Medium553

C.3 An Equivalent Description of the Dielectric Properties of a Homogeneous and Isotropic Medium: Longitudinal and Transverse Dielectric Functions554

D.Calculation of the Variation of the Total Energy Due556

to a Perturbing External Charge Distribution Within the556

Density Functional Formalism556

E.Useful Relations for the Study of Many Body Interactions558

E.1 Relation Between the Expectation Value of the Interaction Energy and the l oral Energy for a System of Interacting Particles558

E.2 Derivation of the Fredholm Formula558

F.Interaction of an Electron With an Electromagnetic Field and Theory of Angle-Resolved Ultra-Violet Photoemission (UPS)559

F.1 The Optical Matrix Element560

F.2 Expression of the Photoemitted Current in UPS562

F.2.1 Some Useful Relations562

F.2.2 Calculation of the Photoemitted Current in UPS564

F.3 Conservation of the Wave Vector in Photoemission567

G.Calculation of the Current in a Scanning Tunneling Microscope571

H.Calculation of the Atomic Dynamic Polarizability578

I.Variation of the Density of States Due to a Perturbing Potential579

J.Energy of Chemisorption in the Anderson-Grimley-Newns Model Using Contour Integrals580

K.Elastic Constants and Elastic Waves in Cubic Crvstals581

K.1 Elastic Strain581

K.2 Elastic Stress582

K.3 Elastic Constants583

K.4 Propagation of Elastic Waves in Cubic Crystals583

K.5 Elastic Energy584

References585

Subject Index599

热门推荐