图书介绍
巴拿赫空间中的概率论 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (法)李多科斯著;一影印本 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510048050
- 出版时间:2012
- 标注页数:482页
- 文件大小:20MB
- 文件页数:494页
- 主题词:巴拿赫空间-概率论-英文
PDF下载
下载说明
巴拿赫空间中的概率论 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Introduction1
Notation7
Part O.Isoperimetric Background and Generalities14
Chapter 1.Isoperimetric Inequalities and the Concentration of Measure Phenomenon14
1.1 Some Isoperimetric Inequalities on the Sphere,in Gauss Space and on the Cube15
1.2 An Isoperimetric Inequality for Product Measures25
1.3 Martingale Inequalities30
Notes and References34
Chapter 2.Generalities on Banach Space Valued Random Variables and Random Processes37
2.1 Banach Space Valued Radon Random Variables37
2.2 Random Processes and Vector Valued Random Variables43
2.3 Symmetric Random Variables and Lévy's Inequalities47
2.4 Some Inequalities for Real Valued Random Variables50
Notes and References52
Part Ⅰ.Banach Space Valued Random Variables and Their Strong Limiting Properties54
Chapter 3.Gaussian Random Variables54
3.1 Integrability and Tail Behavior56
3.2 Integrability of Gaussian Chaos64
3.3 Comparison Theorems73
Notes and References87
Chapter 4.Rademacher Averages89
4.1 Real Rademacher Averages89
4.2 The Contraction Principle95
4.3 Integrability and Tail Behavior of Rademacher Series98
4.4 Integrability of Rademacher Chaos104
4.5 Comparison Theorems111
Notes and References120
Chapter 5.Stable Random Variables122
5.1 Representation of Stable Random Variables124
5.2 Integrability and Tail Behavior133
5.3 Comparison Theorems141
Notes and References147
Chapter 6.Sums of Independent Random Variables149
6.1 Symmetrization and Some Inequalities for Sums of Independent Random Variables150
6.2 Integrability of Sums of Independent Random Variables155
6.3 Concentration and Tail Behavior162
Notes and References176
Chapter 7.The Strong Law of Large Numbers178
7.1 A General Statement for Strong Limit Theorems179
7.2 Examples of Laws of Large Numbers186
Notes and References195
Chapter 8.The Law of the Iterated Logarithm196
8.1 Kolmogorov's Law of the Iterated Logarithm196
8.2 Hartman-Wintner-Strassen's Law of the Iterated Logarithm203
8.3 On the Identification of the Limits216
Notes and References233
Part Ⅱ.Tightness of Vector Valued Random Variables and Regularity of Random Processes236
Chapter 9.Type and Cotype of Banach Spaces236
9.1 enp-Subspaces of Banach Spaces237
9.2 Type and Cotype245
9.3 Some Probabilistic Statements in Presence of Type and Cotype254
Notes and References269
Chapter 10.The Central Limit Theorem272
10.1 Some General Facts About the Central Limit Theorem273
10.2 Some Central Limit Theorems in Certain Banach Spaces280
10.3 A Small Ball Criterion for the Central Limit Theorem289
Notes and References295
Chapter 11.Regularity of Random Processes297
11.1 Regularity of Random Processes Under Metric Entropy Conditions299
11.2 Regularity of Random Processes Under Majorizing Measure Conditions309
11.3 Examples of Applications318
Notes and References329
Chapter 12.Regularity of Gaussian and Stable Processes332
12.1 Regularity of Gaussian Processes333
12.2 Necessary Conditions for the Boundedness and Continuity of Stable Processes349
12.3 Applications and Conjectures on Rademacher Processes357
Notes and References363
Chapter 13.Stationary Processes and Random Fourier Series365
13.1 Stationarity and Entropy365
13.2 Random Fourier Series369
13.3 Stable Random Fourier Series and Strongly Stationary Processes382
13.4 Vector Valued Random Fourier Series387
Notes and References392
Chapter 14.Empirical Process Methods in Probability in Banach Spaces394
14.1 The Central Limit Theorem for Lipschitz Processes395
14.2 Empirical Processes and Random Geometry402
14.3 Vapnik-Chervonenkis Classes of Sets411
Notes and References419
Chapter 15.Applications to Banach Space Theory421
15.1 Subspaces of Small Codimension421
15.2 Conjectures on Sudakov's Minoration for Chaos427
15.3 An Inequality of J.Bourgain430
15.4 Invertibility of Submatrices434
15.5 Embedding Subspaces of Lp into eNP438
15.6 Majorizing Measures on Ellipsoids448
15.7 Cotype of the Canonical Injectione eN∞→L2,1453
15.8 Miscellaneous Problems456
Notes and References459
References461
Subject Index478
热门推荐
- 3181840.html
- 554279.html
- 909911.html
- 971850.html
- 1493498.html
- 354269.html
- 1472902.html
- 1241100.html
- 3833405.html
- 409840.html
- http://www.ickdjs.cc/book_216101.html
- http://www.ickdjs.cc/book_2894918.html
- http://www.ickdjs.cc/book_1729126.html
- http://www.ickdjs.cc/book_1790221.html
- http://www.ickdjs.cc/book_58294.html
- http://www.ickdjs.cc/book_1771362.html
- http://www.ickdjs.cc/book_456100.html
- http://www.ickdjs.cc/book_666520.html
- http://www.ickdjs.cc/book_3539023.html
- http://www.ickdjs.cc/book_244172.html