图书介绍

巴拿赫空间中的概率论 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

巴拿赫空间中的概率论 英文
  • (法)李多科斯著;一影印本 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:9787510048050
  • 出版时间:2012
  • 标注页数:482页
  • 文件大小:20MB
  • 文件页数:494页
  • 主题词:巴拿赫空间-概率论-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

巴拿赫空间中的概率论 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction1

Notation7

Part O.Isoperimetric Background and Generalities14

Chapter 1.Isoperimetric Inequalities and the Concentration of Measure Phenomenon14

1.1 Some Isoperimetric Inequalities on the Sphere,in Gauss Space and on the Cube15

1.2 An Isoperimetric Inequality for Product Measures25

1.3 Martingale Inequalities30

Notes and References34

Chapter 2.Generalities on Banach Space Valued Random Variables and Random Processes37

2.1 Banach Space Valued Radon Random Variables37

2.2 Random Processes and Vector Valued Random Variables43

2.3 Symmetric Random Variables and Lévy's Inequalities47

2.4 Some Inequalities for Real Valued Random Variables50

Notes and References52

Part Ⅰ.Banach Space Valued Random Variables and Their Strong Limiting Properties54

Chapter 3.Gaussian Random Variables54

3.1 Integrability and Tail Behavior56

3.2 Integrability of Gaussian Chaos64

3.3 Comparison Theorems73

Notes and References87

Chapter 4.Rademacher Averages89

4.1 Real Rademacher Averages89

4.2 The Contraction Principle95

4.3 Integrability and Tail Behavior of Rademacher Series98

4.4 Integrability of Rademacher Chaos104

4.5 Comparison Theorems111

Notes and References120

Chapter 5.Stable Random Variables122

5.1 Representation of Stable Random Variables124

5.2 Integrability and Tail Behavior133

5.3 Comparison Theorems141

Notes and References147

Chapter 6.Sums of Independent Random Variables149

6.1 Symmetrization and Some Inequalities for Sums of Independent Random Variables150

6.2 Integrability of Sums of Independent Random Variables155

6.3 Concentration and Tail Behavior162

Notes and References176

Chapter 7.The Strong Law of Large Numbers178

7.1 A General Statement for Strong Limit Theorems179

7.2 Examples of Laws of Large Numbers186

Notes and References195

Chapter 8.The Law of the Iterated Logarithm196

8.1 Kolmogorov's Law of the Iterated Logarithm196

8.2 Hartman-Wintner-Strassen's Law of the Iterated Logarithm203

8.3 On the Identification of the Limits216

Notes and References233

Part Ⅱ.Tightness of Vector Valued Random Variables and Regularity of Random Processes236

Chapter 9.Type and Cotype of Banach Spaces236

9.1 enp-Subspaces of Banach Spaces237

9.2 Type and Cotype245

9.3 Some Probabilistic Statements in Presence of Type and Cotype254

Notes and References269

Chapter 10.The Central Limit Theorem272

10.1 Some General Facts About the Central Limit Theorem273

10.2 Some Central Limit Theorems in Certain Banach Spaces280

10.3 A Small Ball Criterion for the Central Limit Theorem289

Notes and References295

Chapter 11.Regularity of Random Processes297

11.1 Regularity of Random Processes Under Metric Entropy Conditions299

11.2 Regularity of Random Processes Under Majorizing Measure Conditions309

11.3 Examples of Applications318

Notes and References329

Chapter 12.Regularity of Gaussian and Stable Processes332

12.1 Regularity of Gaussian Processes333

12.2 Necessary Conditions for the Boundedness and Continuity of Stable Processes349

12.3 Applications and Conjectures on Rademacher Processes357

Notes and References363

Chapter 13.Stationary Processes and Random Fourier Series365

13.1 Stationarity and Entropy365

13.2 Random Fourier Series369

13.3 Stable Random Fourier Series and Strongly Stationary Processes382

13.4 Vector Valued Random Fourier Series387

Notes and References392

Chapter 14.Empirical Process Methods in Probability in Banach Spaces394

14.1 The Central Limit Theorem for Lipschitz Processes395

14.2 Empirical Processes and Random Geometry402

14.3 Vapnik-Chervonenkis Classes of Sets411

Notes and References419

Chapter 15.Applications to Banach Space Theory421

15.1 Subspaces of Small Codimension421

15.2 Conjectures on Sudakov's Minoration for Chaos427

15.3 An Inequality of J.Bourgain430

15.4 Invertibility of Submatrices434

15.5 Embedding Subspaces of Lp into eNP438

15.6 Majorizing Measures on Ellipsoids448

15.7 Cotype of the Canonical Injectione eN∞→L2,1453

15.8 Miscellaneous Problems456

Notes and References459

References461

Subject Index478

热门推荐