图书介绍

纳米技术显微学手册 22025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

纳米技术显微学手册 2
  • 姚楠,王中林主编 著
  • 出版社: 北京:清华大学出版社
  • ISBN:7302097585
  • 出版时间:2005
  • 标注页数:397页
  • 文件大小:46MB
  • 文件页数:425页
  • 主题词:显微镜学-手册-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

纳米技术显微学手册 2PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 High-Resolution Scanning Electron Microscopy1

1.1 Introduction:Scanning Electron Microscopy and Nanotechnology1

1.2 Electron-Specimen Interactions5

1.2.1 Electron-Specimen Interactions in Homogeneous Materials6

1.2.2 Electron-Speciment Interactions in Composite Samples8

1.3 Instrumentation of/the Scanning Electron Microscope10

1.3.1 General Description10

1.3.2 Performance of a Scanning Electron Microscope13

1.4 The Resolution of Secondary and Backscattered Electron Images18

Contents19

List of Contributors19

1.5 Contrast Mechanisms of SE and BE Images of Nanoparticles and Other Systems21

1.5.1 Small Particle Contrast in High-Resolution BE Images22

1.5.2 Small Particle Contrast in High-Resolution SE Images25

1.5.3 Other Contrast Mechanisms28

1.6 Applications to Characterizing Nanophase Materials29

References35

2 High Spatial Resolution Quantitative Electron Beam Microanalysis for Nanoscale Materials37

2.1 Introduction37

2.2 The Nanomaterials Characterization Challenge:Bulk Nanostructures and Discrete Nanoparticles37

2.2.1 Bulk Nanostructures38

2.2.2 Nanoparticles40

2.3 Physical Basis of the Electron-Excited Analytical Spectrometries40

2.4 Nanoscale Elemental Characterization with High Electron Beam Energy42

2.4.1 EELS42

2.4.2 X-ray Spectrometry48

1.7 Summary and Perspectives52

2.5 Nanoscale Elemental Characterization with Low and Intermediate Electron Beam Energy55

2.5.1 Intermediate Beam Energy X-ray Microanalysis56

2.5.2 Low Beam Energy X-ray Microanalysis:Bulk Nanostructures59

2.5.3 Auger Spectrometry62

2.5.4 Elemental Mapping65

2.6 Examples of Applications to Nanoscale Materials65

2.6.1 Analytical Electron Microscopy65

2.6.2 Low Voltage SEM69

2.6.3 Auger/X-ray SEM73

2.7 Conclusions73

References74

3 Characterization of Nano-Crystalline Materials Using Electron Backscatter Diffraction in the Scanning Electron Microscope77

3.1 Introduction77

3.2 Historical Development of EBSD78

3.3 Origin of EBSD Patterns79

3.3.1 Collection of EBSD Patterns80

3.3.2 Automated Orientation Mapping83

3.4.1 Lateral Resolution84

3.4 Resolution of EBSD84

3.4.2 Depth Resolution88

3.5 Sample Preparation of Nano-Materials for EBSD88

3.6 Applications of EBSD to Nano-Materials89

3.6.1 Heteroepitaxy of Boron Arsenide on[0001]6H-Sic89

3.6.2 Electrodeposited Ni for MEMS Applications91

3.6.3 Polycrystalline Si For MEMS Applications93

3.7 Summary95

References95

4 High Resolution Transmission Electron Microscopy97

4.1 HRTEM and Nanotechnology97

4.2 Principles and Practice of HRTEM97

4.2.1 Basis of Image Formation97

4.2.2 Definitions of Resolution99

4.2.3 Lattice Imaging or Atomic Imaging101

4.2.4 Instrumental Parameters102

4.2.5 Further Requirements103

4.2.6 Milestones104

4.3 Applications of HRTEM105

4.3.1 Semiconductors105

4.3.2 Metals107

4.3.3 Oxides and Ceramics110

4.3.4 Surfaces112

4.3.5 Dynamic Events113

4.4 Current Trends114

4.4.1 Image Viewing and Recording114

4.4.2 On-Line Microscope Control115

4.4.3 Detection and Correction of Third-Order Aberrations116

4.4.4 Quantitative HRTEM117

4.4.5 Aberration-Corrected HRTEM118

4.5.1 The Stobbs'Factor119

4.5 Ongoing Problems119

4.5.2 Radiation Damage120

4.5.3 Inversion of Crystal Scattering120

4.6 Summary and Future Perspective121

References121

5 Scanning Transmission Electron Microscopy127

5.1 Introduction127

5.2 STEM Imaging131

5.3 STEM Imaging of Crystals138

5.3.1 Very Thin Crystals138

5.3.2 Dynamical Diffraction Effects140

5.3.3 Channeling141

5.4 Diffraction in STEM Instruments142

5.4.1 Scanning Mode Electron Diffraction142

5.4.2 Two-Dimensional Recording Systems142

5.4.3 Convergent-Beam Electron Diffraction143

5.4.4 Coherent Nanodiffraction145

5.5 Microanalysis in STEM146

5.5.1 Electron Energy Loss Spectroscopy and Imaging146

5.5.2 Secondary Emissions146

5.6 Studies of Nanoparticles and Nanotubes147

5.6.1 Nanoparticles147

5.6.2 Nanotubes and Nanoshells148

5.7 Studies of Crystal Defects and Interfaces150

5.8 The Structure and Composition of Surfaces152

5.8.1 Ultra-High Vacuum Instruments152

5.8.2 Reflection Electron Microscopy152

5.8.3 Surface Channeling Effects154

5.8.4 MEED and MEEM154

5.9 Amorphous Materials154

5.9.1 Thin Quasi-Amorphous Films154

5.9.2 Thick Amorphous Films155

5.10 STEM Holography156

5.10.1 Gabor's In-Line Holography156

5.10.2 Off-Axis Holography157

5.11 Ultra-High-Resolution STEM159

5.11.1 Atomic Focusers159

5.11.2 Aberration Correction159

5.11.3 Combining Nanodiffraction and Imaging161

5.12 Conclusions162

References163

6 In-situ Electron Microscopy for Nanomeasurements169

6.1 Introduction169

6.2 Thermal Induced Surface Dynamic Processes of Nanocrystals169

6.3 Measuring Dynamic Bending Modulus by Electric Field Induced Mechanical Resonance171

6.3.1 Young's Modulus Measured by Quantifying Thermal Vibration Amplitude171

6.3.2 Bending Modulus by Electric Field Induced Mechanical Resonance173

6.4 Young's Modulus of Composite Nanowires181

6.5 Bending Modulus of Oxide Nanobelts184

6.5.1 Nanobelts184

6.5.2 Dual-mode Resonance of Nanobelts185

6.5.3 Bending Modulus of Nanobelt187

6.6 Nanobelts as Nanocantilevers188

6.7 In-situ Field Emission from Nanotube189

6.8 Work Function at the Tips of Nanotubes and Nanobelts190

6.9 Mapping the Electrostatic Potential at the Nanotube Tips193

6.10 Field Emission Induced Structural Damage195

6.11 Nanothermometer and Nanobearing197

6.12 In-situ Transport Measurement of Nanotubes197

6.12.1 Ballistic Quantum Conductance at Room Temperature197

6.12.2 Quantum Conductance and Surface Contamination199

6.12.3 Top Layer Transport in MWNT203

6.13 Summary204

References205

7 Environmental Transmission Electron Microscopy in Nanotechnology209

7.1 Introduction209

7.2 History of ETEM211

7.2.1 Early Developments211

7.2.2 Later Developments and Current Status212

7.3 Data Collection215

7.3.1 Real-Time Imaging Systems215

7.3.2 Spectroscopy and Chemical Analysis217

7.4 Experimental Design Strategies218

7.5 Applications to Nanomaterials220

7.5.1 Transformation Mechanisms in Nanostructures due to Gas-solid Reactions220

7.5.2 Controlled Synthesis of Nanostructures229

7.5.3 Kinetics233

7.6 Conclusions239

References240

8 Electron Nanocrystallography243

8.1 Introduction243

8.2 Electron Diffraction Modes and Geometry244

8.2.1 Selected Area Electron Diffraction245

8.2.2 Nano-Area Electron Diffraction246

8.2.3 Convergent Beam Electron Diffraction247

8.3 Theory of Electron Diffraction249

8.3.1 Kinematic Electron Diffraction and Electron Atomic Scattering249

8.3.2 Kinematical Electron Diffraction from an Assembly of Atoms251

8.3.3 Geometry of Electron Diffraction from Perfect Crystals254

8.3.4 The Geometry of a CBED Pattern257

8.3.5 Electron Dynamic Theory—the Bloch Wave Method257

8.4 Experimental Analysis260

8.4.1 Experimental Diffraction Pattern Recording260

8.4.2 The Phase Problem and Inversion262

8.4.3 The Refinement Technique263

8.4.4 Electron Diffraction Oversampling and Phase Retrieval for Nanomaterials267

8.5 Applications to Nanostructure Characterization268

8.5.1 Structure Determination of Individual Single-Wall Carbon Nanotubes268

8.5.2 The Structure of Supported Small Nanoclusters and Epitaxy271

8.5.3 Crystal Charge Density273

8.6 Conclusions and Future Perspectives275

References275

9 Tomography Using the Transmission Electron Microscope279

9.1 Introduction279

9.2 Tomography281

9.2.1 A History of Tomography281

9.2.2 The Radon Transform282

9.2.3 The Central Slice Theorem and Fourier Space Reconstruction283

9.2.4 Real Space Reconstruction Using Backprojection284

9.3.1 Acquisition287

9.3 Tomography in the Electron Microscope287

9.3.2 Alignment288

9.3.3 Anisotropic Resolution289

9.3.4 The Projection Requirement292

9.4 STEM HAADF Tomography293

9.5 EFTEM Tomography299

9.6 Conclusions302

References303

10 Off-Axis Electron Holography307

10.1 Electron Holography and Nanotechnology307

10.2 Description of Off-Axis Electron Holography308

10.2.1 Experimental Set-up308

10.2.2 Basic Imaging Theory and Hologram Reconstruction310

10.2.3 Phase Shifts and Mean Inner Potential312

10.2.4 Quantification314

10.2.5 Practical Considerations315

10.3 Nanoscale Electrostatic Fields316

10.3.1 Dopant Profiles317

10.3.2 Piezoelectric Fields317

10.3.3 Charged Defects318

10.3.4 Field-Emitting Carbon Nanotubes320

10.3.5 Thickness and Sample Morphology321

10.4 Nanoscale Magnetic Fields321

10.4.1 Patterned Nanostructures322

10.4.2 Nanoparticle Chains325

10.5 Future Perspectives327

References328

11 Sub-nm Spatially Resolved EELS(Electron Energy-Loss Spectroscopy):Methods,Theory and Applications331

11.1 Introduction:EELS and Nanotechnology331

11.2.1 Definition of an EELS Spectrum and of the Basic Information Which It Contains332

11.2 Understanding the Information Contained in an EELS Spectrum332

11.2.2 Basic Tools Developed for Interpreting and Using Core-Loss Signals336

11.3 Spatially Resolved EELS341

11.3.1 The 3D Data Cube341

11.3.2 Instrumentation Required for Recording the 3D Data Cube,Definition and Estimate of the Spatial and Energy Resolutions343

11.4 Elemental Mapping of Individual Nanoparticles Using Core-loss Signals348

11.4.1 Data Processing Routines:Background Subtraction,Multiple Least Square Fitting348

11.4.2 A Few Examples of Elemental Mapping with EELS Core Edges350

11.4.3 Sensitivity,Limits of Detection in EELS Elemental Mapping352

11.5 Mapping Bonding States and Electronic Structures with ELNES Features352

11.5.1 A Few Selected Examples353

11.5.2 From Fingerprint Techniques to Interpretations Requiring Extended Theoretical Calculations355

11.6 Conclusions357

References357

12.1 Introduction361

12 Imaging Magnetic Structures Using TEM361

12.2 Lorentz Microscopy362

12.2.1 Introduction362

12.2.2 Magnetic-Shield Lens362

12.2.3 Deflection Angle Due to Lorentz Force363

12.2.4 Fresnel Mode364

12.2.5 Foucault Mode371

12.2.6 Lorentz Phase Microscopy372

12.3 Electron Holography376

12.3.1 Introduction376

12.3.2 Observation of Single Magnetic Domain Particles377

12.3.3 Real-time Observation377

12.3.4 High-precision Observation381

12.4 Summary392

References392

Index395

热门推荐