图书介绍
大学数学 微积分 上2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 李辉来,王国铭,白岩主编 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040272543
- 出版时间:2009
- 标注页数:348页
- 文件大小:37MB
- 文件页数:361页
- 主题词:高等数学-高等学校-教材;微积分-高等学校-教材
PDF下载
下载说明
大学数学 微积分 上PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一章 预备知识1
1 实数集1
1.1 集合1
1.2 集合的运算2
1.3 实数集3
1.4 区间与邻域4
1.5 实数的完备性与确界公理6
2 函数7
2.1 常量与变量7
2.2 映射与函数的概念7
2.3 函数的几种特性11
2.4 反函数与复合函数15
2.5 初等函数16
3 常用逻辑符号简介21
3.1 蕴涵与等价21
3.2 全称量词与存在量词21
习题122
第二章 极限与连续函数24
1 数列的极限24
1.1 数列的概念24
1.2 数列的变化趋势与数列极限的概念25
1.3 收敛数列的性质29
1.4 数列极限的四则运算31
1.5 数列收敛的判别法33
习题2.138
2 函数的极限39
2.1 函数极限的概念39
2.2 函数极限的性质及运算法则44
2.3 函数极限存在的判别法47
习题2.251
3 无穷小与无穷大52
3.1 无穷小及其性质52
3.2 无穷小的比较54
3.3 无穷大56
习题2.358
4 连续函数59
4.1 函数的增量59
4.2 函数的连续性60
4.3 函数的间断点及其分类63
习题2.465
5 连续函数的运算与初等函数的连续性66
5.1 连续函数的和、差、积、商的连续性66
5.2 反函数的连续性67
5.3 复合函数的连续性67
5.4 初等函数的连续性69
习题2.570
6 闭区间上连续函数的性质71
6.1 最值定理与有界性定理71
6.2 介值定理72
6.3 函数的一致连续性74
习题2.675
第三章 导数与微分76
1 导数的概念76
1.1 引例76
1.2 导数的概念77
1.3 函数可导与连续的关系82
习题3.183
2 求导法则84
2.1 函数四则运算的求导法则84
2.2 反函数的求导法则88
2.3 复合函数的求导法则89
2.4 初等函数的导数92
习题3.293
3 高阶导数95
3.1 高阶导数的概念95
3.2 Leibniz公式100
习题3.3101
4 隐函数及由参数方程所确定的函数的求导法则102
4.1 隐函数的求导法则102
4.2 对数求导法105
4.3 由参数方程所确定的函数的求导法则107
习题3.4109
5 微分110
5.1 微分的概念110
5.2 微分的几何意义113
5.3 微分的运算法则113
5.4 高阶微分115
5.5 微分的应用116
习题3.5118
第四章 微分中值定理与导数的应用120
1 微分中值定理120
1.1 Rolle定理120
1.2 Lagrange中值定理122
1.3 Cauchy中值定理128
习题4.1130
2 L'Hospital法则132
2.1 未定式的概念132
2.2 未定式的定值法133
习题4.2141
3 Taylor公式142
3.1 Taylor多项式142
3.2 Taylor公式143
3.3 Maclaurin公式147
3.4 Taylor公式的应用149
习题4.3152
4 函数单调性的判别法152
习题4.4155
5 函数的极值与最值156
5.1 函数的极值及其求法156
5.2 最值问题159
习题4.5163
6 函数的凸性与曲线的拐点165
6.1 凸函数的概念及其判别法165
6.2 曲线的拐点及其求法167
6.3 函数图形的描绘169
习题4.6174
7 弧微分与平面曲线的曲率175
7.1 弧微分175
7.2 平面曲线的曲率177
7.3 曲率圆与曲率半径180
习题4.7182
第五章 不定积分183
1 不定积分的概念与性质183
1.1 原函数与不定积分183
1.2 基本积分公式186
1.3 不定积分的性质187
习题5.1188
2 不定积分的换元积分法189
2.1 第一换元法189
2.2 第二换元法194
习题5.2198
3 不定积分的分部积分法199
习题5.3203
4 几种典型函数的积分举例203
4.1 有理函数的积分203
4.2 三角函数有理式的积分209
4.3 无理函数积分举例210
习题5.4212
第六章 定积分213
1 定积分的概念与性质213
1.1 定积分问题的引例213
1.2 定积分的概念215
1.3 定积分的几何意义217
1.4 定积分的性质217
习题6.1220
2 微积分基本定理221
2.1 积分上限函数及其导数221
2.2 Newton-Leibniz公式223
习题6.2226
3 定积分的换元法和分部积分法226
3.1 定积分的换元积分法227
3.2 定积分的分部积分229
习题6.3232
4 定积分的应用232
4.1 微元法233
4.2 平面面图形的面积234
4.3 体积238
4.4 平面曲线的弧长240
4.5 定积分在物理上的应用243
习题6.4247
5 反常积分248
5.1 无穷积分248
5.2 无界函数积分256
习题6.5260
第七章 空间解析几何263
1 空间直角坐标系263
1.1 空间点的直角坐标263
1.2 空间两点间的距离264
习题7.1265
2 向量及其运算266
2.1 向量的概念266
2.2 向量的加减法,向量与数的乘法266
2.3 向量的坐标269
2.4 向量的方向余弦271
2.5 向量的乘积运算273
习题7.2279
3 平面及其方程280
3.1 平面的方程281
3.2 两平面的夹角284
3.3 点到平面的距离285
习题7.3286
4 空间直线及其方程287
4.1 空间直线的方程287
4.2 点、直线、平面之间的关系290
4.3 过直线的平面束方程293
习题7.4294
5 曲面及其方程296
5.1 曲面方程296
5.2 柱面296
5.3 旋转曲面297
5.4 曲面的参数方程299
习题7.5300
6 曲线及其方程300
6.1 曲线方程300
6.2 空间曲线在坐标面上的投影302
习题7.6304
7 常见的二次曲面305
7.1 椭球面305
7.2 二次锥面307
7.3 双曲面308
7.4 抛物面311
习题7.7313
习题参考答案314
参考文献348
热门推荐
- 3720311.html
- 1161966.html
- 757048.html
- 1384989.html
- 805284.html
- 3046233.html
- 1014761.html
- 263158.html
- 3825725.html
- 3332247.html
- http://www.ickdjs.cc/book_2848319.html
- http://www.ickdjs.cc/book_3534993.html
- http://www.ickdjs.cc/book_1585049.html
- http://www.ickdjs.cc/book_3475633.html
- http://www.ickdjs.cc/book_471376.html
- http://www.ickdjs.cc/book_2188020.html
- http://www.ickdjs.cc/book_2102893.html
- http://www.ickdjs.cc/book_626038.html
- http://www.ickdjs.cc/book_1965334.html
- http://www.ickdjs.cc/book_1668923.html