图书介绍
QUANTUM MECHANICS SYMMETRIES2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- Second Edition 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7506212269
- 出版时间:未知
- 标注页数:496页
- 文件大小:86MB
- 文件页数:515页
- 主题词:
PDF下载
下载说明
QUANTUM MECHANICS SYMMETRIESPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Symmetries in Quantum Mechanics1
1.1 Symmetries in Classical Physics1
1.2 Spatial Translations in Quantum Mechanics18
1.3 The Unitary Translation Operator19
1.4 The Equation of Motion for States Shifted in Space20
1.5 Symmetry and Degeneracy of States22
1.6 Time Displacements in Quantum Mechanics30
1.7 Mathematical Supplement:Definition of a Group32
1.8 Mathematical Supplement:Rotations and their Group Theoretical Properties35
1.9 An Isomorphism of the Rotation Group37
1.9.1 Infinitesimal and Finite Rotations39
1.9.2 Isotropy of Space41
1.10 The Rotation Operator for Many-Particle States50
1.11 Biographical Notes51
2.Angular Momentum Algebra Representation of Angular Momentum Operators—Generators of SO(3)53
2.1.Irreducible Representations of the Rotation Group53
2.2 Matrix Representations of Angular Momentum Operators57
2.3 Addition of Two Angular Momenta66
2.4 Evaluation of Clebsch-Gordan Coefficients70
2.5 Recursion Relations for Clebsch-Gordan Coefficients71
2.6 Explicit Calculation of Clebsch-Gordan Coefficients72
2.7 Biographical Notes79
3.Mathematical Supplement:Fundamental Properties of Lie Groups81
3.1 General Structure of Lie Groups81
3.2 Interpretation of Commutators as Generalized Vector Products,Lie's Theorem,Rank of Lie Group91
3.3 Invariant Subgroups,Simple and Semisimple Lie Groups,Ideals93
3.4 Compact Lie Groups and Lie Algebras101
3.5 Invariant Operators(Casimir Operators)101
3.6 Theorem of Racah102
3.7 Comments on Multiplets102
3.8 Invariance Under a Symmetry Group104
3.9 Construction of the Invariant Operators108
3.10 Remark on Casimir Operators of Abelian Lie Groups110
3.11 Completeness Relation for Casimir Operators110
3.12 Review of Some Groups and Their Properties112
3.13 The Connection Between Coordianate Transformations and Transformations of Functions113
3.14 Biographical Notes126
4.Symmetry Groups and Their Physical Meaning-General Considerations127
4.1 Biographical Notes132
5.The Isospin Group(Isobaric Spin)133
5.1 Isospin Operators for a Multi-Nucleon System139
5.2 General Properties of Representations of a Lie Algebra146
5.3 Regular(or Adjoint)Representation of a Lie Algebra148
5.4 Transformation Law for Isospin Vectors152
5.5 Experimental Test of Isospin Invariance159
5.6 Biographical Notes174
6.The Hypercharge175
6.1 Biographical Notes181
7.The SU(3)Symmetry183
7.1 The Groups U(n)and SU(n)183
7.1.1.The Generators of U(n)and SU(n)185
7.2 The Generators of SU(3)187
7.3 The Lie Algebra of SU(3)190
7.4 The Subalgebras of the SU(3)-Lie Algebra and the Shift Operators198
7.5 Coupling of T-,U-and V-Multiplets201
7.6 Quantitative Analysis of Our Reasoning202
7.7 Further Remarks About the Geometric Form of an SU(3)Multiplet204
7.8 The Number of States on Mesh Points on Inner Shells205
8.Quarks and SU(3)217
8.1 Searching for Quarks219
8.2 The Transformation Properties of Quark States220
8.3 Construction of all SU(3)Multiplets from the Elementary Representations[3]and[?]226
8.4 Construction of the Representation D(p,q)from Quarks and Antiquarks228
8.4.1.The Smallest SU(3)Representations231
8.5 Meson Multiplets240
8.6 Rules for the Reduction of Direct Products of SU(3)Multiplets244
8.7 U-spin Invariance248
8.8 Test of U-spin Invariance250
8.9 The Gell-Mann-Okubo Mass Formula252
8.10 The Clebsch-Gordan Coefficients of the SU(3)254
8.11 Quark Models with Inner Degrees of Freedom257
8.12 The Mass Formula in SU(6)283
8.13 Magnetic Moments in the Quark Model284
8.14 Excited Meson and Baryon States286
8.14.1 Combinations of More Than Three Quarks286
8.15 Excited States with Orbital Angular Momentum288
9.Representations of the Permutation Group and Young Tableaux291
9.1 The Permutation Group and Identical Particles291
9.2 The Standard Form of Young Diagrams295
9.3 Standard Form and Dimension of Irreducible Representations of the Permutation Group SN297
9.4 The Connection Between SU(2)and S2307
9.5 The Irreducible Representations of SU(n)310
9.6 Determination of the Dimension316
9.7 The SU(n-1)Subgroups of SU(n)320
9.8 Decomposition of the Tensor Product of Two Multiplets322
10.Mathematical Excursion.Group Characters327
10.1 Definition of Group Characters327
10.2 Schur's Lemmas328
10.2.1 Schur's First Lemma328
10.2.2 Schur's Second Lemma328
10.3 Orthogonality Relations of Representations and Discrete Groups329
10.4 Equivalence Classes331
10.5 Orthogonality Relations of the Group Characters for Discrete Groups and Other Relations334
10.6 Orthogonality Relations of the Group Characters for the Example of the Group D3334
10.7 Reduction of a Representation336
10.8 Criterion for Irreducibility337
10.9 Direct Product of Representations337
10.10 Extension to Continuous,Compact Groups338
10.11 Mathematical Excursion:Group Integration339
10.12 Unitary Groups340
10.13 The Transition from U(N)to SU(N)for the Example SU(3)342
10.14 Integration over Unitary Groups344
10.15 Group Characters of Unitary Groups347
11.Charm and SU(4)365
11.1 Particles with Charm and the SU(4)367
11.2 The Group Properties of SU(4)367
11.3 Tables of the Structure Constants fijk and the Coefficients dijk for SU(4)376
11.4 Multiplet Structure of SU(4)378
11.5 Advanced Considerations385
11.5.1 Decay of Mesons with Hidden Charm385
11.5.2 Decay of Mesons with Open Charm386
11.5.3 Baryon Multiplets387
11.6 The Potential Model of Charmonium398
11.7 The SU(4)[SU(8)]Mass Formula406
11.8 The γResonances409
12.Mathematical Supplement413
12.1 Introduction413
12.2 Root Vectors and Classical Lie Algebras417
12.3 Scalar Products of Eigenvalues421
12.4 Cartan-Wevl Normalization424
12.5 Graphic Representation of the Root Vectors424
12.6 Lie Algebra of Rank 1425
12.7 Lie Algebras of Rank 2426
12.8 Lie Algebras of Rank 1>2426
12.9 The Exceptional Lie Algebras427
12.10 Simple Roots and Dynkin Diagrams428
12.11 Dynkin's Prescription430
12.12 The Cartan Matrix432
12.13 Determination of all Roots from the Simple Roots433
12.14 Two Simple Lie Algebras435
12.15 Representations of the Classical Lie Algebras436
13.Special Discrete Symmetries441
13.1 Space Reflection(Parity Transformation)441
13.2 Reflected States and Operators443
13.3 Time Reversal444
13.4 Antiunitary Operators445
13.5 Many-Particle Systems450
13.6 Real Eigenfunctions451
14.Dynamical Symmetries453
14.1 The Hydrogen Atom453
14.2 The Group SO(4)455
14.3 The Energy Levels of the Hydrogen Atom456
14.4 The Classical Isotropic Oscillator458
14.4.1 The Quantum Mechanical Isotropic Oscillator458
15.Mathematical Excursion:Non-compact Lie Groups473
15.1 Definition and Examples of Non-compact Lie Groups473
15.2 The Lie Group SO(2,1)480
15.3 Application to Scattering Problems484
Subject Index489
热门推荐
- 1401828.html
- 2679945.html
- 2015578.html
- 230928.html
- 14966.html
- 913680.html
- 1756729.html
- 3014918.html
- 2013927.html
- 2952754.html
- http://www.ickdjs.cc/book_2297019.html
- http://www.ickdjs.cc/book_1159011.html
- http://www.ickdjs.cc/book_2946565.html
- http://www.ickdjs.cc/book_2681707.html
- http://www.ickdjs.cc/book_3490331.html
- http://www.ickdjs.cc/book_3855758.html
- http://www.ickdjs.cc/book_3832294.html
- http://www.ickdjs.cc/book_3253055.html
- http://www.ickdjs.cc/book_396909.html
- http://www.ickdjs.cc/book_3834875.html