图书介绍
哈代数论 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (英)哈代,(英)莱特著 著
- 出版社: 北京:人民邮电出版社
- ISBN:9787115214270
- 出版时间:2009
- 标注页数:622页
- 文件大小:15MB
- 文件页数:642页
- 主题词:数论-英文
PDF下载
下载说明
哈代数论 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ. THE SERIES OF PRIMES(1)1
1.1. Divisibility of integers1
1.2. Prime numbers2
1.3. Statement of the fundamental theorem of arithmetic3
1.4. The sequence of primes4
1.5. Some questions concerning primes6
1.6. Some notations7
1.7. The logarithmic function9
1.8. Statement of the prime number theorem10
Ⅱ. THE SERIES OF PRIMES(2)14
2.1. First proof of Euclid,s second theorem14
2.2. Further deductions from Euclid,s argument14
2.3. Primes in certain arithmetical progressions15
2.4. Second proof of Euclid,s theorem17
2.5. Fermat,s and Mersenne,s numbers18
2.6. Third proof of Euclid,s theorem20
2.7. Further results on formulae for primes21
2.8. Unsolved problems concerning primes23
2.9. Moduli of integers23
2.10. Proof of the fundamental theorem of arithmetic25
2.11. Another proof of the fundamental theorem26
Ⅲ. FAREY SERIES AND A THEOREM OF MINKOWSKI28
3.1. The definition and simplest properties of a Farey series28
3.2. The equivalence of the two characteristic properties29
3.3. First proof of Theorems 28 and 2930
3.4. Second proof of the theorems31
3.5. The integral lattice32
3.6. Some simple properties of the fundamental lattice33
3.7. Third proof of Theorems 28 and 2935
3.8. The Farey dissection of the continuum36
3.9. A theorem of Minkowski37
3.10. Proof of Minkowski,s theorem39
3.11. Developments of Theorem 3740
Ⅳ. IRRATIONAL NUMBERS45
4.1. Some generalities45
4.2. Numbers known to be irrational46
4.3. The theorem of Pythagoras and its generalizations47
4.4. The use of the fundamental theorem in the proofs of Theorems 43-4549
4.5. A historical digression50
4.6. Geometrical proof of the irrationality of √552
4.7. Some more irrational numbers53
Ⅴ. CONGRUENCES AND RESIDUES57
5.1. Highest common divisor and least common multiple57
5.2. Congruences and classes of residues58
5.3. Elementary properties of congruences60
5.4. Linear congruences60
5.5. Euler,s function φ(m)63
5.6. Applications of Theorems 59 and 61 to trigonometrical sums65
5.7. A general principle70
5.8. Construction of the regular polygon of 17 sides71
Ⅵ. FERMAT,S THEOREM AND ITS CONSEQUENCES78
6.1. Fermat,s theorem78
6.2. Some properties of binomial coeffcients79
6.3. A second proof of Theorem 7281
6.4. Proof of Theorem 2282
6.5. Quadratic residues83
6.6. Special cases of Theorem 79: Wilson,s theorem85
6.7. Elementary properties of quadratic residues and non-residues87
6.8. The order of a (mod m)88
6.9. The converse of Fermat,s theorem89
6.10. Divisibility of 2p-1 -1 by p291
6.11. Gauss,s lemma and the quadratic character of 292
6.12. The law of reciprocity95
6.13. Proof of the law of reciprocity97
6.14. Tests for primality98
6.15. Factors of Mersenne numbers; a theorem of Euler100
Ⅶ. GENERAL PROPERTIES OF CONGRUENCES103
7.1. Roots of congruences103
7.2. Integral polynomials and identical congruences103
7.3. Divisibility of polynomials (mod m)105
7.4. Roots of congruences to a prime modulus106
7.5. Some applications of the general theorems108
7.6. Lagrange,s proof of Fermat,s and Wilson,s theorems110
7.7. The residue of {1/2(p-1)}!111
7.8. A theorem of Wolstenholme112
7.9. The theorem of von Staudt115
7.10. Proof of von Staudt,s theorem116
Ⅷ. CONGRUENCES TO COMPOSITE MODULI120
8.1. Linear congruences120
8.2. Congruences of higher degree122
8.3. Congruences to a prime-power modulus123
8.4. Examples125
8.5. Bauer,s identical congruence126
8.6. Bauer,s congruence: the case p=2129
8.7. A theorem of Leudesdorf130
8.8. Further consequences of Bauer,s theorem132
8.9. The residues of 2p-1 and(p-1)!to modulus p2135
Ⅸ. THE REPRESENTATION OF NUMBERS BY DECIMALS138
9.1. The decimal associated with a given number138
9.2. Terminating and recurring decimals141
9.3. Representation of numbers in other scales144
9.4. Irrationals defined by decimals145
9.5. Tests for divisibility146
9.6. Decimals with the maximum period147
9.7. Bachet,s problem of the weights149
9.8. The game of Nim151
9.9. Integers with missing digits154
9.10. Sets of measure zero155
9.11. Decimals with missing digits157
9.12. Normal numbers158
9.13. Proof that almost all numbers are normal160
Ⅹ. CONTINUED FRACTIONS165
10.1. Finite continued fractions165
10.2. Convergents to a continued fraction166
10.3. Continued fractions with positive quotients168
10.4. Simple continued fractions169
10.5. The representation of an irreducible rational fraction by a simple continued fraction170
10.6. The continued fraction algorithm and Euclid,s algorithm172
10.7. The difference between the fraction and its convergents175
10.8. Infinite simple continued fractions177
10.9. The representation of an irrational number by an infinite continued fraction178
10.10. A lemma180
10.11. Equivalent numbers181
10.12. Periodic continued fractions184
10.13. Some special quadratic surds187
10.14. The series of Fibonacci and Lucas190
10.15. Approximation by convergents194
Ⅺ. APPROXIMATION OF IRRATIONALS BY RATIONALS198
11.1. Statement of the problem198
11.2. Generalities concerning the problem199
11.3. An argument of Dirichlet201
11.4. Orders of approximation202
11.5. Algebraic and transcendental numbers203
11.6. The existence of transcendental numbers205
11.7. Lionville,s theorem and the construction of transcendental numbers206
11.8. The measure of the closest approximations to an arbitrary irrational208
11.9. Another theorem concerning the convergents to a continued fraction210
11.10. Continued fractions with bounded quotients212
11.11. Further theorems concerning approximation216
11.12. Simultaneous approximation217
11.13. The transcendence of e218
11.14. The transcendence of πr223
Ⅻ. THE FUNDAMENTAL THEOREM OF ARITHMETIC IN k(1),k(i),AND k(ρ)229
12.1. Algebraic numbers and integers229
12.2. The rational integers,the Gaussian integers,and the integers of k(ρ)230
12.3. Euclid,s algorithm231
12.4. Application of Euclid,s algorithm to the fundamental theorem in k(1)232
12.5. Historical remarks on Euclid,s algorithm and the fundamental theorem234
12.6. Properties of the Gaussian integers235
12.7. Primes in k(i)236
12.8. The fundamental theorem of arithmetic in k(i)238
12.9. The integers of k(ρ)241
ⅩⅢ. SOME DIOPHANTINE EQUATIONS245
13.1. Fermat,s last theorem245
13.2. The equation x2+y2=z2245
13.3. The equation x4+y4=z4247
13.4. The equation x3+y3=z3248
13.5. The equation x3+y3=3z3253
13.6. The expression of a rational as a sum of rational cubes254
13.7. The equation x3+y3+z3=t3257
ⅩⅣ. QUADRATIC FIELDS(1)264
14.1. Algebraic fields264
14.2. Algebraic numbers and integers; primitive polynomials265
14.3. The general quadratic field k(√m)267
14.4. Unities and primes268
14.5. The unities of k(√2)270
14.6. Fields in which the fundamental theorem is false273
14.7. Complex Euclidean fields274
14.8. Real Euclidean fields276
14.9. Real Euclidean fields(continued)279
ⅩⅤ QUADRATIC FIELDS(2)283
15.1. The primes of k(i)283
15.2. Fermat,s theorem in k(i)285
15.3. The primes of k(ρ)286
15.4. The primes of k(√2) and k(√5)287
15.5. Lucas,s test for the primality of the Mersenne number M4n+3290
15.6. General remarks on the arithmetic of quadratic fields293
15.7. Ideals in a quadratic field295
15.8. Other fields299
ⅩⅥ. THE ARITHMETICAL FUNCTIONS φ(n),μ(n),d(n),σ(n),r(n)302
16.1. The function φ(n)302
16.2. A further proof of Theorem 63303
16.3. The Mobius function304
16.4. The Mobius inversion formula305
16.5. Further inversion formulae307
16.6. Evaluation of Ramanujan,s sum308
16.7. The functions d(n) and σk(n)310
16.8. Perfect numbers311
16.9. The function r(n)313
16.10. Proof of the formula for r(n)315
ⅩⅦ. GENERATING FUNCTIONS OF ARITHMETICAL FUNCTIONS318
17.1. The generation of arithmetical functions by means of Dirichlet series318
17.2. The zeta function320
17.3. The behaviour of ζ(s) when s→1321
17.4. Multiplication of Dirichlet series323
17.5. The generating functions of some special arithmetical functions326
17.6. The analytical interpretation of the Mobius formula328
17.7. The function A(n)331
17.8. Further examples of generating functions334
17.9. The generating function of r(n)337
17.10. Generating functions of other types338
ⅩⅧ. THE ORDER OF MAGNITUDE OF ARITHMETICAL FUNCTIONS342
18.1. The order of d(n)342
18.2. The average order of d(n)347
18.3. The order of σ (n)350
18.4. The order of φ(n)352
18.5. The average order of φ(n)353
18.6. The number of squarefree numbers355
18.7. The order of r(n)356
ⅩⅨ. PARTITIONS361
19.1. The general problem of additive arithmetic361
19.2. Partitions of numbers361
19.3. The generating function of p(n)362
19.4. Other generating functions365
19.5. Two theorems of Euler366
19.6. Further algebraical identities369
19.7. Another formula for F(x)371
19.8. A theorem of Jacobi372
19.9. Special cases of Jacobi,s identity375
19.10. Applications of Theorem 353378
19.11. Elementary proof of Theorem 358379
19.12. Congruence properties ofp(n)380
19.13. The Rogers-Ramanujan identities383
19.14. Proof of Theorems 362 and 363386
19.15. Ramanujan,s continued fraction389
ⅩⅩ. THE REPRESENTATION OF A NUMBER BY TWO OR FOUR SQUARES393
20.1. Waring,s problem: the numbers g(k) and G(k)393
20.2. Squares395
20.3. Second proof of Theorem 366395
20.4. Third and fourth proofs of Theorem 366397
20.5. The four-square theorem399
20.6. Quatemions401
20.7. Preliminary theorems about integral quaternions403
20.8. The highest common right-hand divisor of two quaternions405
20.9. Prime quaternions and the proof of Theorem 370407
20.10. The values of g(2) and G(2)409
20.11. Lemmas for the third proof of Theorem 369410
20.12. Third proof of Theorem 369:the number of representations411
20.13. Representations by a larger number of squares415
ⅩⅪ. REPRESENTATION BY CUBES AND HIGHER POWERS419
21.1. Biquadrates419
21.2. Cubes:the existence of G(3) and g(3)420
21.3. A bound for g(3)422
21.4. Higher powers424
21.5. A lower bound for g(k)425
21.6. Lower bounds for G(k)426
21.7. Sums affected with signs:the number v(k)431
21.8. Upper bounds for v(k)433
21.9. The problem of Prouhet and Tarry:the number P(k,j)435
21.10. Evaluation of P(k,j) for particular k and j437
21.11. Further problems of Diophantine analysis440
ⅩⅫ. THE SERIES OF PRIMES (3)451
22.1. The functions ?(x)andψ(x)451
22.2. Proof that ?(x) and ψ(x) are of order x453
22.3. Bertrand,s postulate and a ‘formula,for primes455
22.4. Proof of Theorems 7 and 9458
22.5. Two formal transformations460
22.6. An important sum461
22.7. The sum ∑p-1 and the product П (1 - p-1)464
22.8. Mertens,s theorem466
22.9. Proof of Theorems 323 and 328469
22.10. The number of prime factors of n471
22.11. The normal order of ω(n) and Ω (n)473
22.12. A note on round numbers476
22.13. The normal order of d (n)477
22.14. Selberg,s theorem478
22.15. The functions R(x) and V(ξ)481
22.16. Completion of the proof of Theorems 434,6,and 8486
22.17. Proof ofTheorem 335489
22.18. Products of k prime factors490
22.19. Primes in an interval494
22.20. A conjecture about the distribution of prime pairs p,p+2495
ⅩⅩⅢ. KRONECKER,S THEOREM501
23.1. Kronecker,s theorem in one dimension501
23.2. Proofs of the one-dimensional theorem502
23.3. The problem of the reflected ray505
23.4. Statement of the general theorem508
23.5. The two forms of the theorem510
23.6. An illustration512
23.7. Lettenmeyer,s proof of the theorem512
23.8. Estermann,s proof of the theorem514
23.9. Bohr,s proof of the theorem517
23.10. Uniform distribution520
ⅩⅩⅣ. GEOMETRY OF NUMBERS523
24.1. Introduction and restatement of the fundamental theorem523
24.2. Simple applications524
24.3. Arithmetical proof of Theorem 448527
24.4. Best possible inequalities529
24.5. The best possible inequality for ξ2+η2530
24.6. The best possible inequality for |ξη|532
24.7. A theorem concerning non-homogeneous forms534
24.8. Arithmetical proof of Theorem 455536
24.9. Tchebotaref,s theorem537
24.10. A converse of Minkowski,s Theorem 446540
ⅩⅩⅤ. ELLIPTIC CURVES549
25.1. The congruent number problem549
25.2. The addition law on an elliptic curve550
25.3. Other equations that define elliptic curves556
25.4. Points of finite order559
25.5. The group of rational points564
25.6. The group of points modulo p.573
25.7. Integer points on elliptic curves574
25.8. The L-series of an elliptic curve578
25.9. Points of finite order and modular curves582
25.10. Elliptic curves and Fermat,s last theorem586
APPENDIX593
1. Another formula for pn593
2. A generalization of Theorem 22593
3. Unsolved problems concerning primes594
A LIST OF BOOKS597
INDEX OF SPECIAL SYMBOLS AND WORDS601
INDEX OF NAMES605
GENERAL INDEX611
热门推荐
- 355923.html
- 882642.html
- 1365744.html
- 3726038.html
- 1143114.html
- 470133.html
- 620330.html
- 141046.html
- 3106049.html
- 220786.html
- http://www.ickdjs.cc/book_109344.html
- http://www.ickdjs.cc/book_3038695.html
- http://www.ickdjs.cc/book_2675276.html
- http://www.ickdjs.cc/book_1670810.html
- http://www.ickdjs.cc/book_2899158.html
- http://www.ickdjs.cc/book_3062314.html
- http://www.ickdjs.cc/book_678970.html
- http://www.ickdjs.cc/book_2437698.html
- http://www.ickdjs.cc/book_219671.html
- http://www.ickdjs.cc/book_3355553.html