图书介绍
STATISTICS FOR HIGH-DIMENSIONAL DATA METHODS2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- THEORY AND APPLICATIONS 著
- 出版社: SPRINGER
- ISBN:7519211677
- 出版时间:2016
- 标注页数:556页
- 文件大小:83MB
- 文件页数:574页
- 主题词:
PDF下载
下载说明
STATISTICS FOR HIGH-DIMENSIONAL DATA METHODSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 The framework1
1.2 The possibilities and challenges2
1.3 About the book3
1.3.1 Organization of the book3
1.4 Some examples4
1.4.1 Prediction and biomarker discovery in genomics5
2 Lasso for linear models7
2.1 Organization of the chapter7
2.2 Introduction and preliminaries8
2.2.1 The Lasso estimator9
2.3 Orthonormaldesign10
2.4 Prediction11
2.4.1 Practical aspects about the Lasso for prediction12
2.4.2 Some results from asymptotic theory13
2.5 Variable screening and||^β-β0||q-norms14
2.5.1 Tuning parameter selection for variable screening17
2.5.2 Motif regression for DNA binding sites18
2.6 Variable selection19
2.6.1 Neighborhood stability and irrepresentable condition22
2.7 Key properties and corresponding assumptions:a summary23
2.8 The adaptive Lasso:a two-stage procedure25
2.8.1 An illustration:simulated data and motif regression25
2.8.2 Orthonormal design27
2.8.3 The adaptive Lasso:variable selection under weak conditions28
2.8.4 Computation29
2.8.5 Multi-step adaptive Lasso30
2.8.6 Non-convex penalty functions32
2.9 Thresholdingthe Lasso33
2.10 The relaxed Lasso34
2.11 Degrees of freedom of the Lasso34
2.12 Path-following algorithms36
2.12.1 Coordinatewise optimization and shooting algorithms38
2.13 Elastic net:an extension41
Problems42
3 Generalized linear models and the Lasso45
3.1 Organization of the chapter45
3.2 Introduction and preliminaries45
3.2.1 The Lasso estimator:penalizing the negative log-likelihood46
3.3 Important examples of generalized linear models47
3.3.1 Binary response variable and logistic regression47
3.3.2 Poisson regression49
3.3.3 Multi-category response variable and multinomial distribution50
Problems53
4 The group Lasso55
4.1 Organization of the chapter55
4.2 Introduction and preliminaries56
4.2.1 The group Lasso penalty56
4.3 Factor variables as covariates58
4.3.1 Prediction of splice sites in DNA sequences59
4.4 Properties of the group Lasso for generalized linear models61
4.5 The generalized group Lasso penalty64
4.5.1 Groupwise prediction penalty and parametrization invariance65
4.6 The adaptive group Lasso66
4.7 Algorithms for the group Lasso67
4.7.1 Block coordinate descent68
4.7.2 Block coordinate gradient descent72
Problems75
5 Additive models and many smooth univariate functions77
5.1 Organization of the chapter77
5.2 Introduction and preliminaries78
5.2.1 Penalized maximum likelihood for additive models78
5.3 The sparsity-smoothness penalty79
5.3.1 Orthogonal basis and diagonal smoothing matrices80
5.3.2 Natural cubic splines and Sobolev spaces81
5.3.3 Computation82
5.4 A sparsity-smoothness penalty of group Lasso type85
5.4.1 Computational algorithm86
5.4.2 Alternative approaches88
5.5 Numerical examples89
5.5.1 Simulated example89
5.5.2 Motif regression90
5.6 Prediction and variable selection91
5.7 Generalized additive models92
5.8 Linear model with varying coefficients93
5.8.1 Properties for prediction95
5.8.2 Multivariate linear model95
5.9 Multitask learning95
Problems97
6 Theory for the Lasso99
6.1 Organization of this chapter99
6.2 Least squares and the Lasso101
6.2.1 Introduction101
6.2.2 The result assuming the truth is linear102
6.2.3 Linear approximation of the truth108
6.2.4 A further refinement:handling smallish coefficients112
6.3 The setup for general convex loss114
6.4 The margin condition119
6.5 Generalized linear model without penalty122
6.6 Consistency of the Lasso for general loss126
6.7 An oracle inequality128
6.8 The lq-error for 1≤q≤2135
6.8.1 Application to least squares assuming the truth is linear136
6.8.2 Application to general loss and a sparse approximation of the truth137
6.9 The weighted Lasso139
6.10 The adaptively weighted Lasso141
6.11 Concave penalties144
6.11.1 Sparsity oracle inequalities for least squares with lr-penalty146
6.11.2 Proofs for this section(Section 6.11)147
6.12 Compatibility and(random)matrices150
6.13 On the compatibility condition156
6.13.1 Direct bounds for the compatibility constant158
6.13.2 Bounds using ||βS||2 1≤s||βS||2 2161
6.13.3 Sets N containing S167
6.13.4 Restricted isometry169
6.13.5 Sparse eigenvalues170
6.13.6 Further coherence notions172
6.13.7 An overview of the various eigenvalue flavored constants174
Problems178
7 Variable selection with the Lasso183
7.1 Introduction183
7.2 Some results from literature184
7.3 Organization of this chapter185
7.4 The beta-min condition187
7.5 The irrepresentable condition in the noiseless case189
7.5.1 Definition of the irrepresentable condition190
7.5.2 The KKT conditions190
7.5.3 Necessity and sufficiency for variable selection191
7.5.4 The irrepresentable condition implies the compatibility condition195
7.5.5 The irrepresentable condition and restricted regression197
7.5.6 Selecting a superset of the true active set199
7.5.7 The weighted irrepresentable condition200
7.5.8 The weighted irrepresentable condition and restricted regression201
7.5.9 The weighted Lasso with “ideal” weights203
7.6 Definition of the adaptive and thresholded Lasso204
7.6.1 Definition of adaptive Lasso204
7.6.2 Definition of the thresholded Lasso205
7.6.3 Order symbols206
7.7 A recollection of the results obtained in Chapter 6206
7.8 The adaptive Lasso and thresholding:invoking sparse eigenvalues210
7.8.1 The conditions on the tuning parameters210
7.8.2 The results211
7.8.3 Comparison with the Lasso213
7.8.4 Comparison between adaptive and thresholded Lasso214
7.8.5 Bounds for the number of false negatives215
7.8.6 Imposing beta-min conditions216
7.9 The adaptive Lasso without invoking sparse eigenvalues218
7.9.1 The condition on the tuning parameter219
7.9.2 The results219
7.10 Some concluding remarks221
7.11 Technical complements for the noiseless case without sparse eigenvalues222
7.11.1 Prediction error for the noiseless(weighted)Lasso222
7.11.2 The number of false positives of the noiseless(weighted)Lasso224
7.11.3 Thresholding the noiseless initial estimator225
7.11.4 The noiseless adaptive Lasso227
7.12 Technical complements for the noisy case without sparse eigenvalues232
7.13 Selection with concave penalties237
Problems241
8 Theory for l1 /l2-penalty procedures249
8.1 Introduction249
8.2 Organization and notation of this chapter250
8.3 Regression with group structure252
8.3.1 The loss function and penalty253
8.3.2 The empirical process254
8.3.3 The group Lasso compatibility condition255
8.3.4 A group Lasso sparsity oracle inequality256
8.3.5 Extensions258
8.4 High-dimensional additive model258
8.4.1 The loss function and penalty258
8.4.2 The empirical process260
8.4.3 The smoothed Lasso compatibility condition264
8.4.4 A smoothed group Lasso sparsity oracle inequality265
8.4.5 On the choice of the penalty270
8.5 Linear model with time-varying coefficients275
8.5.1 The loss function and penalty275
8.5.2 The empirical process277
8.5.3 The compatibility condition for the time-varying coefficients model278
8.5.4 A sparsity oracle inequality for the time-varying coefficients model279
8.6 Multivariate linear model and multitask learning281
8.6.1 The loss function and penalty281
8.6.2 The empirical process282
8.6.3 The multitask compatibility condition283
8.6.4 A multitask sparsity oracle inequality284
8.7 The approximation condition for the smoothed group Lasso286
8.7.1 Sobolevsmoothness286
8.7.2 Diagonalized smoothness287
Problems288
9 Non-convex loss functions and l1-regularization293
9.1 Organization of the chapter293
9.2 Finite mixture of regressions model294
9.2.1 Finite mixture of Gaussian regressions model294
9.2.2 l1-penalized maximum likelihood estimator295
9.2.3 Properties of the l1-penalized maximum likelihood estimator299
9.2.4 Selection of the tuning parameters300
9.2.5 Adaptive l l1-penalization301
9.2.6 Riboflavin production with bacillus subtilis301
9.2.7 Simulated example303
9.2.8 Numerical optimization304
9.2.9 GEM algorithm for optimization304
9.2.10 Proof of Proposition 9.2308
9.3 Linear mixed effects models310
9.3.1 The model and l -penalized estimation311
9.3.2 The Lasso in linear mixed effects models312
9.3.3 Estimation of the random effects coefficients312
9.3.4 Selection of the regularization parameter313
9.3.5 Properties of the Lasso in linear mixed effects models313
9.3.6 Adaptive l1-penalized maximum likelihood estimator314
9.3.7 Computational algorithm314
9.3.8 Numerical results317
9.4 Theory for l1-penalization with non-convex negative log-likelihood320
9.4.1 The setting and notation320
9.4.2 Oracle inequality for the Lasso for non-convex loss functions323
9.4.3 Theory for finite mixture of regressions models326
9.4.4 Theory for linear mixed effects models329
9.5 Proofs for Section 9.4332
9.5.1 Proof of Lemma 9.1332
9.5.2 Proof of Lemma 9.2333
9.5.3 Proof of Theorem 9.1335
9.5.4 Proof of Lemma 9.3337
Problems337
10 Stable solutions339
10.1 Organization of the chapter339
10.2 Introduction,stability and subsampling340
10.2.1 Stability paths for linear models341
10.3 Stability selection346
10.3.1 Choice of regularization and error control346
10.4 Numerical results351
10.5 Extensions352
10.5.1 Randomized Lasso352
10.6 Improvements from a theoretical perspective354
10.7 Proofs355
10.7.1 Sample splitting355
10.7.2 Proof of Theorem 10.1356
Problems358
11 P-values for linear models and beyond359
11.1 Organization of the chapter359
11.2 Introduction,sample splitting and high-dimensional variable selection360
11.3 Multi sample splitting and familywise error control363
11.3.1 Aggregation over multiple p-values364
11.3.2 Control of familywise error365
11.4 Multi sample splitting and false discovery rate367
11.4.1 Control of false discovery rate368
11.5 Numerical results369
11.5.1 Simulations and familywise error control369
11.5.2 Familywise error control for motif regression in computational biology372
11.5.3 Simulations and false discovery rate control372
11.6 Consistent variable selection374
11.6.1 Single sample split method374
11.6.2 Multi sample split method377
11.7 Extensions377
11.7.1 Other models378
11.7.2 Control of expected false positive selections378
11.8 Proofs379
11.8.1 Proof of Proposition 11.1379
11.8.2 Proof of Theorem 11.1380
11.8.3 Proof of Theorem 11.2382
11.8.4 Proof of Proposition 11.2384
11.8.5 Proof of Lemma 11.3384
Problems386
12 Boosting and greedy algorithms387
12.1 Organization of the chapter387
12.2 Introduction and preliminaries388
12.2.1 Ensemble methods:multiple prediction and aggregation388
12.2.2 AdaBoost389
12.3 Gradient boosting:a functional gradient descent algorithm389
12.3.1 The generic FGD algorithm390
12.4 Some loss functions and boosting algorithms392
12.4.1 Regression392
12.4.2 Binary classification393
12.4.3 Poisson regression396
12.4.4 Two important boosting algorithms396
12.4.5 Other data structures and models398
12.5 Choosing the base procedure398
12.5.1 Componentwise linear least squares for generalized linear models399
12.5.2 Componentwise smoothing spline for additive models400
12.5.3 Trees403
12.5.4 The low-variance principle404
12.5.5 Initialization of boosting404
12.6 L2Boosting405
12.6.1 Nonparametric curve estimation:some basic insights about boosting405
12.6.2 L2Boosting for high-dimensional linear models409
12.7 Forward selection and orthogonal matching pursuit413
12.7.1 Linear models and squared error loss414
12.8 Proofs418
12.8.1 Proof of Theorem 12.1418
12.8.2 Proof of Theorem 12.2420
12.8.3 Proof of Theorem 12.3426
Problems430
13 Graphical modeling433
13.1 Organization of the chapter433
13.2 Preliminaries about graphical models434
13.3 Undirected graphical models434
13.3.1 Markov properties for undirected graphs434
13.4 Gaussian graphical models435
13.4.1 Penalized estimation for covariance matrix and edge set436
13.4.2 Nodewise regression440
13.4.3 Covariance estimation based on undirected graph442
13.5 Ising model for binary random variables444
13.6 Faithfulness assumption445
13.6.1 Failure of faithfulness446
13.6.2 Faithfulness and Gaussian graphical models448
13.7 The PC-algorithm:an iterative estimation method449
13.7.1 Population version of the PC-algorithm449
13.7.2 Sample version for the PC-algorithm451
13.8 Consistency for high-dimensional data453
13.8.1 An illustration455
13.8.2 Theoretical analysis of the PC-algorithm456
13.9 Back to linear models462
13.9.1 Partial faithfulness463
13.9.2 The PC-simple algorithm465
13.9.3 Numerical results468
13.9.4 Asymptotic results in high dimensions471
13.9.5 Correlation screening(sure independence screening)474
13.9.6 Proofs475
Problems480
14 Probability and moment inequalities481
14.1 Organization of this chapter481
14.2 Some simple results for a single random variable482
14.2.1 Sub-exponential random variables482
14.2.2 Sub-Gaussian random variables483
14.2.3 Jensen’s inequality for partly concave functions485
14.3 Bernstein’s inequality486
14.4 Hoeffding’s inequality487
14.5 The maximum of p averages489
14.5.1 Using Bernstein’s inequality489
14.5.2 Using Hoeffding’s inequality491
14.5.3 Having sub-Gaussian random variables493
14.6 Concentration inequalities494
14.6.1 Bousquet’s inequality494
14.6.2 Massart’s inequality496
14.6.3 Sub-Gaussian random variables496
14.7 Symmetrization and contraction497
14.8 Concentration inequalities for Lipschitz loss functions500
14.9 Concentration for squared error loss with random design504
14.9.1 The inner product of noise and linear functions505
14.9.2 Squared linear functions505
14.9.3 Squared error loss508
14.10 Assuming only lower order moments508
14.10.1 Nemirovski moment inequality509
14.10.2 A uniform inequality for quadratic forms510
14.11 Using entropy for concentration in the sub-Gaussian case511
14.12 Some entropy results516
14.12.1 Entropy of finite-dimensional spaces and general convex hulls518
14.12.2 Sets with restrictions on the coefficients518
14.12.3 Convex hulls of small sets:entropy with log-term519
14.12.4 Convex hulls of small sets:entropy without log-term520
14.12.5 Further refinements523
14.12.6 An example:functions with(m—1)-th derivative of bounded variation523
14.12.7 Proofs for this section(Section 14.12)525
Problems535
Author Index539
Index543
References547
热门推荐
- 2577586.html
- 41570.html
- 1110369.html
- 3329189.html
- 121281.html
- 1947948.html
- 1312003.html
- 3550550.html
- 2765221.html
- 1095497.html
- http://www.ickdjs.cc/book_807641.html
- http://www.ickdjs.cc/book_2808995.html
- http://www.ickdjs.cc/book_1443895.html
- http://www.ickdjs.cc/book_1916936.html
- http://www.ickdjs.cc/book_2686859.html
- http://www.ickdjs.cc/book_1546081.html
- http://www.ickdjs.cc/book_2853652.html
- http://www.ickdjs.cc/book_510570.html
- http://www.ickdjs.cc/book_2887465.html
- http://www.ickdjs.cc/book_409430.html